首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
High-efficient organic light-emitting diodes (OLEDs) with indium-tin-oxide (ITO) anode treated by KMnO4 solution are demonstrated. The performance of the OLEDs depends on the concentration of KMnO4 solution and time of ultrasonic treatment. The OLED whose ITO anode was treated by ultrasonic in KMnO4 solution with concentration of 50mg/L for 15 rain displays the best performance. It has higher electroluminescent brightness and lower turn-on voltage than those of traditional devices. In particular, its efficiency can be increased by approximately 40%. The surfaces of the ITO anode with and without treating are analysed by scanning electron microscopy.  相似文献   

2.
We demonstrate that the electroluminescent performances of organic light-emitting diodes (OLEDs) are significantly improved by evaporating a thin F4-TCNQ film as an anode buffer layer on the ITO anode. The optimum Alq3-based OLEDs with F4-TCNQ buffer layer exhibit a lower turn-on voltage of 2.6 V, a higher brightness of 39820cd/m^2 at 13 V, and a higher current efficiency of 5.96cd/A at 6 V, which are obviously superior to those of the conventional device (turn-on voltage of 4.1 V, brightness of 18230cd/m^2 at 13 V, and maximum current efficiency of 2.74calla at 10 V). Furthermore, the buffered devices with F4-TCNQ as the buffer layer could not only increase the efficiency but also simplify the fabrication process compared with the p-doped devices in which F4-TCNQ is doped into β-NPB as p-HTL (3.11 cd/A at 7 V). The reason why the current efficiency of the p-doped devices is lower than that of the buffered devices is analyzed based on the concept of doping, the measurement of absorption and photoluminescence spectra of the organic materials, and the current density-voltage characteristics of the corresponding hole-only devices.  相似文献   

3.
The performance of P3HT:PCBM solar cells was improved by anode modification using spin-coated Tb(aca)3phen ultrathin films. The modification of the Tb(aca)3phen ultrathin film between the indium tin oxide(ITO) anode and the PEDOT:PSS layer resulted in a maximum power conversion efficiency(PCE) of 2.99% compared to 2.66% for the reference device, which was due to the increase in the short-circuit current density(Jsc). The PCE improvement could be attributed to the short-wavelength energy utilization and the optimized morphology of the active layers. Tb(aca)3phen with its strong down-conversion luminescence properties is suitable for the P3HT:PCBM blend active layer, and the absorption region of the ternary blend films is extended into the near ultraviolet region. Furthermore, the crystallization and the surface morphology of P3HT:PCBM films were improved with the Tb(aca)3phen ultrathin film. The ultraviolent–visible absorption spectra,atomic force microscope(AFM), and X-ray diffraction(XRD) of the films were investigated. Both anode modification and short-wavelength energy utilization using Tb(aca)3phen in P3HT:PCBM solar cells led to about a 12% PCE increase.  相似文献   

4.
A fiber-coupled laser-diode (LD) end-pumped Nd:GdVO4 slab continuous-wave (CW) 912-nm laser and an LD bar end-pumped Nd:GdVO4 slab CW 912-nm laser are both demonstrated in this paper.Using the fiber-coupled LD of end-pumped type,a highest CW 912-nm laser output power of 10.17 W is obtained with a high optical-to-optical conversion efficiency of 24.6% and a slope efficiency of 34.5%.The measured M 2 factors of beam quality in x and y directions are 5.3 and 5.1,respectively.Besides,an LD bar of end-pumped type is used to realize CW 912-nm laser output,which has the advantages of compactness and low cost.When the pump power is 38.8 W,the output power is 8.87 W and the measured M 2 factors of beam quality in x and y directions are 16 and 1.31,respectively.In order to improve the beam quality of the 912-nm laser at x direction,a new quasi-concentric laser resonator will be designed,and an LD bar end-pumped Nd:GdVO4 slab high-power CW 912-nm TEM00 laser will be realized in the future.  相似文献   

5.
In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l’Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode.  相似文献   

6.
A unidirectional surface plasmon polaritons (SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol (PVA) film and a silver rectangle block. The generation efficiency of this SPPs generator is investigated using the finite difference time domain method. Due to the presence of the silver rectangle block, the SPPs generation efficiency of the asymmetric single nanoslit with PVA film can be greatly enhanced and the corresponding wavelength with the maximum enhancement factor can be tuned flexibly. The influence of the structural parameters on the generation efficiency is also investigated for the enhanced unidirectional SPPs generator.  相似文献   

7.
We describe a Q-switched Er:GdVO4 laser resonantly pumped by a MgO-doped periodically poled LiNbO3 optical parametric oscillator (MgO: PPLN OPO) at 1536 nm. In continuous-wave lasing, the maximum output power is 1.14 W with an incident pump power of 4.7 W and a slope efficiency of 27%. In Q-switched operation, 1.1 mJ of output pulse energy is achieved at 200 Hz. The upper-state lifetime at different pulse repetition frequencies is also calculated.  相似文献   

8.
朱亚彬  胡伟  纳杰  何帆  周岳亮  陈聪 《中国物理 B》2011,20(4):47301-047301
Polycrystalline ZnO and ITO films on SiO2 substrates are prepared by radio frequency (RF) reactive magnetron sputtering. Schottky contacts are fabricated on ZnO films by spin coating with a high conducting polymer, poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) as the metal electrodes. The current-voltage measurements for samples on unannealed ZnO films exhibit rectifying behaviours with a barrier height of 0.72 eV (n=1.93). The current for the sample is improved by two orders of magnitude at 1 V after annealing ZnO film at 850 ℃, whose barrier height is 0.75 eV with an ideality factor of 1.12. X-ray diffraction, atomic force microscopy and scanning electron microscopy are used to study the properties of the PEDOT:PSS/ZnO/ITO/SiO2. The results are useful for applications such as metal-semiconductor field-effect transistors and UV photodetectors.  相似文献   

9.
瞿述  ;彭景翠 《中国物理快报》2008,25(8):3052-3055
Conducting polymer polydimethylsiloxane (PDMS) is studied for the high performance electrode of organic electroluminescence devices. A method to prepare the electrode consisting of a SiC thin film and PDMS is investigated. By using ultra thin SiC films with different thicknesses, the organic electroluminescence devices are obtained in an ultra vacuum system with the model device PDMS/SiC/PPV/Alq3, where PPV is poly para-phenylene vinylene and Alq3 is tris(S-hydroxyquinoline) aluminium. The capacitance voltage (C - V), capacitance-frequency (C - F), current-voltage (I - V), radiation intensity-voltage (R - V) and luminance eFficiency-voltage (E - V) measurements are systematically studied to investigate the conductivity, Fermi alignment and devices properties in organic semiconductors. Scanning Kelvin probe measurement shows that the work function of PDMS/SiC anode with a 2.5-nm SiC over layer can be increased by as much as 0.28eV, compared to the conventional ITO anode. The result is attributed to the charge transfer effect and ohmic contacts at the interface.  相似文献   

10.
A near-infrared germanium(Ge)Schottky photodetector(PD)with an ultrathin silicon(Si)barrier enhancement layer between the indium-doped tin oxide(ITO)electrode and Ge epilayer on Si or silicon-on-insulator(SOI)is proposed and fabricated.The well-behaved ITO/Si cap/Ge Schottky junctions without intentional doping process for the Ge epilayer are formed on the Si and SOI substrates.The Si-and SOI-based ITO/Si cap/Ge Schottky PDs exhibit low dark current densities of 33 mA/cm2 and 44 mA/cm2,respectively.Benefited from the high transmissivity of ITO electrode and the reflectivity of SOI substrate,an optical responsivity of 0.19 A/W at 1550 nm wavelength is obtained for the SOI-based ITO/Si cap/Ge Schottky PD.These complementary metal–oxide–semiconductor(CMOS)compatible Si(or SOI)-based ITO/Si cap/Ge Schottky PDs are quite useful for detecting near-infrared wavelengths with high efficiency.  相似文献   

11.
杨倩倩  赵谡玲  张福俊  闫光  孔超  樊星  张妍斐  徐叙瑢 《中国物理 B》2012,21(12):128402-128402
The properties of poly(3-hexylthiophene):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) organic photovoltaic devices (OPVs) with indium tin oxide (ITO) anode treated by KMnO4 solution are investigated. The optimized KMnO4 solution has a concentration of 50 mg/L, and ITO is treated for 15 min. The modification of ITO anode results in an enhancement of the power conversion efficiency (PCE) of the device, which is responsible for the increase of the photocurrent. The performance enhancement is attributed to the work function modification of the ITO substrate through the strong oxygenation of KMnO4, and then the charge collection efficiency is improved.  相似文献   

12.
[6,6]-Phenyl C61 butyric acid methyl ester (PCBM) is used to modify an indium tin oxide (ITO)-coated substrate. Organic light-emitting diodes (OLEDs) using PCBM as the anode modification layer are fabricated. The dependence of performance on different PCBM thicknesses is also investigated. When the thickness of the PCBM film is appropriate, the brightness and efficiency of OLEDs are enhanced, which is attributed to an enhanced hole injection and an improved carrier balance. The enhancement of hole injection was ascribed to the formation of a dipole layer at the anode/organic interface.  相似文献   

13.
《Current Applied Physics》2019,19(8):910-916
Primary (n-propyl amine, n-PRYLA), secondary (dipropyl amine, DPRYLA) and alcohol (propanol amine, PRPOHA) amine derivatives were used as amine sources in graphene oxide (GO) modification and obtained samples were named as nPRYLA-GO, DPRYLA-GO and PRPOHA-GO, respectively. Modified graphene oxide (mGO) derivatives were doped in poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PH1000) and O2 plasma treatment (70W, 3 min) was applied on the spin casted films. PH1000:mGO films presented high optical transparency values (>90%) and low resistivity (177–183 Ω/sq). The roughness values were increased especially when the hydrophobic alkyl chain containing DPRYLA-GO and nPRYLA-GO were doped in PH1000. Prepared films were utilized as anode in solution processed blue organic light emitting diode. PH1000:PRPOHA-GO anode presented more than 30 nm of decrement in full with at half maximum and 1.6, 1.5 and 1.9 fold enhancements in current, power and external quantum efficiency values, compared to those of ITO anode, respectively.  相似文献   

14.
采用PECVD(等离子体增强化学气相沉积)工艺在普通玻璃和Si基上制备出了方块电阻低至89 Ω,可见光透过率高达79%,对基体附着力强的多晶态的AZO(ZnO:Al)薄膜.采用PECVD法制备AZO薄膜是一种有益的尝试,AZO透明导电薄膜不仅具有与ITO(透明导电薄膜,如In2O3:Sn)可比拟的光电特性,而且价格低廉、无毒,在氢等离子体环境中更稳定,所获结果对实际工艺条件的选择具有一定借鉴作用和参考价值. 关键词: AZO(ZnO:Al) 等离子体增强化学气相沉积 透明导电薄膜  相似文献   

15.
In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 × 10−4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density (Jsc) and 92.7% enhancement in conversion efficiency (η) over the untreated solar cell are obtained.  相似文献   

16.
Transparent indium-tin-oxide (ITO) anode surface was modified using O3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N,N′-Diphenyl-N,N′-bis(3-methylphenyl)-1,1′-diphenyl-4,4′-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.  相似文献   

17.
For the anode composed of electrocatalyst oxide, intermediate layer and titanium substrate, the substitution of a certain amount of iridium with tin in the IrO2 intermediate layer was remarkably effective in elongating the life of the anode in preventing oxidation of the substrate titanium during oxygen evolution. The longest life was realized by preparation of intermediate layer with uniform thickness by brush-coating of H2IrCl6-SnCl4 butanol solution and subsequent calcination. The anode with the intermediate layer prepared from 0.04 M H2IrCl6-0.06 M SnCl4 butanol solution showed the best performance, that is, the oxygen evolution efficiency higher than 99.8% for more than 4300 h in the electrolysis of 0.5 M NaCl solution of pH 1 at the current density of 1000 Am−2. An increase in SnCl4 concentration decreased the viscosity of the coating solution with a consequent enhancement of uniformity of the intermediate layer but decreased the thickness of the intermediate layer acting as a barrier to prevent oxidation of titanium. Thus, the best performance was attained at an intermediate SnCl4 concentration. The growth of an oxide layer on titanium during electrolysis occurred and was found by the potential increase.  相似文献   

18.
Modification of electrodes has attracted much attention in the study of organic semiconductor devices. A self-assembled monolayer (SAM) of 4-fluorothiophenol is employed to modify the Ag film on the surface of indium tin oxide (ITO) to improve the hole injection and the surface morphology. The modified anode was characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and UV–vis transmittance spectra. To investigate the effect of the modification on the device characteristics, typical double layer devices with the structure of anode/-naphthylphenylbiphenyl diamine (NPB, 60 nm)/tris-(8-hydroxyquinoline) aluminum (Alq3, 60 nm)/LiF(0.7 nm)/Al(100 nm) were fabricated using the modified anode and the bare ITO. The effect of Ag layer thickness on the device performance is also investigated. The results revealed that SAM modified ultra-thin Ag film is an effective buffer layer for organic light emitting diode. The device using the ITO/Ag (5 nm)/SAM as anode show improved device characteristics than that of using bare ITO as anode. The enhancements in luminance and efficiency are attributed to enhanced hole injection and smooth surface between anode and the organic material. The Ag thickness of 5 nm is chosen as an acceptable compromise between substrate transparency and the device performance.  相似文献   

19.
黄迪  徐征  赵谡玲 《物理学报》2014,63(2):27301-027301
采用poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-?uoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]](PTB7)作为有机发光二极管器件的阳极修饰层,制备了结构为indium tin oxide(ITO)/PTB7(不同浓度)/N,N’-Bis(naphthalen-1-yl)-N,N’-bis(phenyl)benzidine(NPB,40 nm)/8-hydroxyquinoline(Alq3,60 nm)/LiF(1 nm)/Al的系列器件,同时研究了不同浓度的PTB7对器件性能的影响.PTB7的最佳浓度为0.25 mg/mL,器件性能得到明显的改善,起亮电压为4.3 V.当驱动电压为14.6 V时,最大亮度为45800 cd/m2,最大电流效率为9.1 cd/A.与没有PTB7修饰的器件相比,其起亮电压降低了1.9 V,最高亮度提升了78.5%.器件性能提高归因于PTB7的插入使得空穴注入和传输能力大大改善.  相似文献   

20.
We report highly transparent Ag-doped In2O3 (IAO) films with high work function for use as transparent anodes in organic solar cells (OSCs). The electrical, optical, structural, and morphological properties of IAO films and their work function were investigated as a function of the rapid thermal annealing (RTA) temperature. At an RTA temperature of 600 °C, the IAO film showed a sheet resistance of 23.12 Ohm/square, an optical transmittance of 79.28%, and a work function of 5.21 eV, similar to conventional Sn-doped In2O3 (ITO) films. The low resistivity of the IAO film was closely related to oxygen vacancies caused by Ag suboxide formation in the In2O3 matrix. A bulk-heterojunction OSC with the optimized IAO anode showed performance comparable to that of an OSC with a reference ITO anode, indicating that the IAO films is a promising anode material for use in OSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号