首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
刘丰  胡晓堃  栗岩锋  邢岐荣  胡明列  柴路  王清月 《物理学报》2012,61(4):40703-040703
报道了利用出射面加工有微棱锥结构抗反射层的GaP晶体THz发射器产生超快THz脉冲. 基于微结构界面等效折射率渐变原理, 设计并利用超精密微加工技术在GaP块状THz发射器出射面加工了亚波长微棱锥结构层, 用以提高所产生的THz波的耦合输出. 实验验证了该微结构层能提高所产生的THz波的耦合输出效率, 并能够有效散射剩余抽运光, 提高系统运转的稳定性.  相似文献   

2.
ZnS衬底表面亚波长增透结构的设计及制备   总被引:2,自引:0,他引:2       下载免费PDF全文
徐启远  刘正堂  李阳平  武倩  张淼 《物理学报》2011,60(1):14103-014103
ZnS是长波红外窗口优选材料之一,而其表面反射率较高;为了减小表面反射,利用耦合波理论,对ZnS衬底表面的亚波长结构参数进行优化设计,得到了具有良好增透效果的最佳亚波长结构参数;并利用掩膜光刻、反应离子刻蚀技术在ZnS衬底表面制备出在8—12 μm波段范围内有明显增透效果的二维亚波长结构,这为ZnS衬底的增透提供了一种新的方法. 关键词: 耦合波理论 表面亚波长增透结构 反应离子刻蚀 硫化锌  相似文献   

3.
光学整流效应是产生宽带太赫兹波最有效的手段之一,基于光学整流效应产生太赫兹波的方法主要依靠抽运光与非线性晶体之间的相互作用。分别以5mm的磷化镓(GaP)块状晶体和6mm的GaP波导结构作为太赫兹波发射晶体,对具有相同功率的贝塞尔光束中心光斑和高斯光束的光学整流效率进行了对比研究。实验结果表明,在GaP块状晶体中,贝塞尔光束的光学整流效率是高斯光束的2.04倍;波导的特殊结构可以使抽运光和太赫兹波之间实现严格的相位匹配,贝塞尔光束的相对效率增加为3.46倍。两种抽运光产生的太赫兹波场均具有高斯分布特性,且贝塞尔光束产生的太赫兹波频谱具有明显的红移特征。贝塞尔光束能够提高光学整流效率,有助于实现高功率、紧凑型的太赫兹源,对推广太赫兹波的应用有显著意义。  相似文献   

4.
黄楠  李雪峰  刘红军  夏彩鹏 《物理学报》2009,58(12):8326-8331
数值模拟并分析了以GaSe晶体为例对光学差频产生太赫兹(THz)波的特性.结果表明:当THz波长为227.5 μm,晶体长度为26.3 mm时,产生THz波功率达到增益饱和,在增益饱和点输出最高峰值功率可以达到945 W.由于晶体吸收的影响,THz波的增益饱和区是输出功率的非稳定区,而THz波的输出稳定区位于增益饱和区之后,在稳定区的THz波稳定性取决于抽运光的稳定性.当THz波波长为227.5 μm时,达到稳定区所需晶体长度为37.9 mm,此时THz波输出峰值功率可以达到735 W. 关键词: 光学差频 太赫兹辐射 稳定性  相似文献   

5.
基于LiNbO3晶体垂直表面输出技术,设计了一台小型化外腔THz参量振荡器。利用小型化灯1064 nm脉冲激光器泵浦MgO:LiNbO3,通过优化设计三波非共线相位匹配的光学参量振荡腔结构,实现THz垂直晶体表面输出,减少LiNbO3晶体对THz波的吸收,提高了THz波输出光束质量。当在泵浦光能量为128 mJ、重复频率为10 Hz时,获得THz波的调谐范围为0.69~3.01 THz,在1.6 THz处获得THz波最大平均功率为10.8 W,脉冲宽度为10 ns,对应THz波能量转换效率为8.4310-6。  相似文献   

6.
基于受激电磁耦子散射原理,采用已报道的利用非线性光学参量振荡方法产生可调谐太赫兹波的实验条件作为理论分析的实验模型,以GaAs,GaP, InP,ZnTe晶体为代表,计算分析了在闪锌矿晶体中参量振荡产生太赫兹波的吸收、增益特性,对输出THz波的调谐特性给出了详尽分析.分析太赫兹波高效耦合输出的腔型结构,并与掺氧化镁铌酸锂晶体组成的太赫兹波参量振荡器做对比. 关键词: 太赫兹波 太赫兹波参量振荡 电磁耦子 闪锌矿晶体  相似文献   

7.
报道了利用脉宽可调的光子晶体光纤飞秒激光放大器抽运矩形波导结构的GaP晶体太赫兹(THz) 发射器产生频率可调谐的超快THz脉冲.非线性晶体中光整流过程产生的THz辐射频率随抽运光脉冲宽度而 变化. GaP波导THz发射器可通过波导的几何尺寸来控制色散,以达到增加有效作用长度和提高输出功率的目的. 不同横截面尺寸的波导型发射器的THz辐射峰值频率随相位匹配条件的改变而改变,加以脉宽调节技术, 可以在大频谱范围获得频谱精细可调的THz脉冲.实验中在1 mm×0.7 mm的波导型THz发射器中获得了 频率可调谐的THz脉冲.提出实现THz辐射频率大范围调谐的GaP波导型阵列发射器的实施方案.  相似文献   

8.
二氧化硅亚波长纳米微结构的增透特性   总被引:1,自引:1,他引:0  
对亚波长纳米微结构-非紧密堆积多晶胶体晶体光学薄膜的增透特性进行了研究。采用浸渍-提拉法在玻璃表面组装了亚波长纳米微结构,并利用等效介质理论分析其光学性质,理论和实验符合。研究表明实验制备的纳米微结构具有优异的增透性质,通过控制组装条件可以控制膜层厚度实现高增透效率从可见光到近红外的有效调谐,且微结构在玻璃基底上的等效折射率接近1.22,透射率最大能提高约7%,达到99.8%的增透效果。  相似文献   

9.
亚波长结构对10.6 μm的抗反射表面的研制   总被引:2,自引:1,他引:1  
陈思乡  易新建  李毅 《光学学报》2001,21(8):001-1003
运用等效媒质理论对亚波长结构的抗反射表面进行了分析,设计出了一种抗反射表面结构,并利用二元光学制作工艺技术,对这种表面进行了实验制备。测试结果表明,这种表面结构就像单层抗反射膜一样,具有很好的增透效果,表面结构的等效折射率相当于镀层材料折射率,而刻蚀深度则相当于镀层的四分之一波长的厚度。  相似文献   

10.
高性能85mm短腔光学参变振荡器的THz电磁波输出特性分析   总被引:5,自引:0,他引:5  
报道了以MgO∶LiNbO3为非线性光学介质,采用85 mm长的法布里珀罗单谐振腔结构形式的光学参变振荡器,产生THz电磁波的实验结果。使用波长为1064 nm的Nd∶YAGQ开关脉冲激光器作为抽运光源,通过改变入射角度使参变振荡器的相位匹配条件发生变化。采用Si真空量热器,并利用THz波干涉测量仪;或通过测量闲频光的频率对产生的THz波频率进行了测量。实验表明该参变振荡器输出频率调谐范围为0.9~3.0 THz。在抽运光能量为20 mJ/pulse,脉冲宽度16 ns,重复频率50 Hz条件下得到输出峰值位于1.2 THz,能量为102.5 PJ/pulse的THz波输出。通过引入Si棱镜阵列减小了THz波在晶体中的全反射,从而提高THz波的能量输出。使用金属缝隙探测器,对辐射的THz波的波束水平方向空间分布进行了测量,分析了Si棱镜阵列的衍射效应对THz波束空间分布的影响。  相似文献   

11.
We implemented a singly resonant optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates. It has major advantages such as walk-off compensation and oscillation at four wavelengths. The threshold of the oscillation was measured to be 8 MW/cm2, which is about a factor of 4 lower than that based in two separate KTiOPO4 crystals. By frequency-mixing the dual-wavelength output in GaP stacks, we generated the terahertz radiation at 2.54 THz. The tuning range of the terahertz output was demonstrated to be 2.19-2.77 THz.  相似文献   

12.
We review our recent efforts on power scaling of THz pulses generated from several nonlinear-optical crystals. By using a high-resistivity GaP crystal, we have significally increased the output peak power to as high as 722 W. By stacking three GaP wafers, we have further increased the highest output peak power to 2.36 kW. On the other hand, by using CO2 laser pulses, we have obtained the average output power of 260 μW. We have also used these laser pulses to scale up the output power for the THz pulses to 29.8 μW by stacking GaAs wafers. Indeed, by stacking up to ten wafers, we have increased the output power by a factor of 160. Finally, by using ultrafast laser pulses, we have achieved record-high output powers for the THz pulses generated from multi-period periodically-poled LiNbO3 crystals based on a backward configuration. The highest output power obtained by us so far is 10.7 μW.  相似文献   

13.
We demonstrate a compact and cost-effective setup to generate broadband THz radiation. As pump source we use a diode-pumped solid-state femtosecond oscillator or a femtosecond fiber laser system, partially in combination with an optical parametric oscillator. For the THz generation we utilize optical rectification in gallium phosphide (GaP) and gallium arsenide (GaAs). The THz power is on the order of 1 μW and we demonstrate imaging and spectral measurements with this setup.  相似文献   

14.
We present a review of the development of a compact and high-power broadband terahertz (THz) source optically excited by a femtosecond photonic crystal fiber (PCF) amplifier.The large mode area of the PCF and the stretcher-free configuration make the pump source compact and very efficient.Broadband THz pulses of 150 μW extending from 0.1 to 3.5 THz are generated from a 3-mm-thick GaP crystal through optical rectification of 12-W pump pulses with duration of 66 fs and a repetition rate of 52 MHz.A strong saturation effect is observed,which is attributed to pump pulse absorption;a Z-scan measurement shows that three-photon absorption dominates the nonlinear absorption when the crystal is pumped by femtosecond pulses at 1 040 nm.A further scale-up of the THz source power is expected to find important applications in THz nonlinear optics and nonlinear THz spectroscopy.  相似文献   

15.
We review the progress made by us on the exploration of the fundamental limits to terahertz (THz) generation from several semiconductor electrooptic materials. Through the measurements of the THz output versus the pump beam in terms of incident angle, polarization, azithumal angle, and pump intensity, we have demonstrated that we can precisely determine the contributions made by the optical rectification and photocurrent surge. When a material is pumped below its bandgap, optical rectification is always the mechanism for the THz generation. Above the bandgap, however, these two mechanisms often compete with each other, depending on the material characteristics and pump intensity. At a sufficiently high pump intensity, optical rectification usually becomes the dominant mechanism for a second-order nonlinear material. Our analysis indicates that second-order nonlinear coefficients are resonantly enhanced when a material is pumped above its bandgap. In such a case, the THz output power and normalized conversion efficiency can be dramatically increased. We have also illustrated that, for some materials, two-photon absorption can be one of the fundamental limits to the THz generation.  相似文献   

16.
Electrooptical sampling of ultra-broadband terahertz (THz) radiation with the help of ultra-short 1060-nm pulses is reported for the first time. The THz pulses are generated by exciting a surface emitter (InAs) with a parabolic fiber laser amplifier delivering 100-fs pulses at a repetition rate of 75 MHz and an average power of 10 W. ZnTe and GaP crystals are used for detection and their velocity mismatch is compared at 800 nm and 1060 nm. PACS 42.55.Wd; 42.70.Nq; 42.72.Ai  相似文献   

17.
We overview methods of THz-wave generation using frequency down-conversion in GaAs with periodically-inverted crystalline orientation. First, we compare different nonlinear-optical materials suitable for THz generation, analyze THz generation process in quasi-phase-matched crystals and consider theoretical limits of optical-to-THz conversion. Then, we review single-pass optical rectification experiments with femtosecond pump pulses, performed in periodically-inverted GaAs, where monochromatic THz output tunable in the range 0.9–3.0 THz was produced. Finally, we describe a novel approach to create a compact highly efficient tunable (0.5–3.5 THz) room temperature monochromatic THz source, based on the concept of intracavity THz generation via resonantly-enhanced difference frequency mixing. This approach allowed generating of 1 mW of average THz power, potentially scalable to 10–100 mW.  相似文献   

18.
根据光整流效应,利用超快激光脉冲泵浦GaSe晶体实现了0.2~2.5 THz的宽带太赫兹辐射输出。禁带中的电子在两个800 nm光子的作用下激发到导带中形成自由载流子,进而吸收所产生的太赫兹辐射,最终导致太赫兹的输出随泵浦功率的增加而趋于饱和。为了研究双光子吸收对太赫兹输出的影响,测量了800 nm处的GaSe晶体的双光子吸收系数,结果为 0.165 cm/GW。通过对太赫兹输出实验数据的拟合,得到GaSe晶体中自由载流子对太赫兹输出的吸收截面为1×10-15 cm2。本文的研究结果可用于优化GaSe晶体在强激光泵浦下的太赫兹转换效率。  相似文献   

19.
We demonstrate the widely linear and broadband terahertz (THz) generation on GaSe:Te crystals by femtosecond laser pulses. It was found that the dopant, Te atoms, in GaSe crystals significantly enhances the efficiency of THz generation, and its central frequency can be tuned by varying the crystal thickness through non-phase-matched optical rectification. Moreover, the wide-ranging linearity for the optical-to-THz conversion and central-frequency-tunable THz generation promise for GaSe:Te crystals to be potential materials for high-power (>1.36 μW) THz applications.  相似文献   

20.
《Current Applied Physics》2014,14(3):403-406
We investigated efficient terahertz wave generation by optical rectification in as-grown nonlinear organic single crystal HMQ-T (2-(4-hydroxy-3-methoxystyryl)-1-methylquinolinium 4-methylbenzenesulfonate). Optimal thickness of crystals directly available by a slow cooling method in methanol solution enabled us to achieve high-field few-cycle THz waves at 800-nm pumping. With 95-mW pumping at 1-kHz repetition rate, an optical-to-THz conversion efficiency of 2.7 × 10−4 was achieved and the THz electric field strength, measured by electro-optic sampling, was as high as 110.1 kV/cm. Such an efficient THz source based on as-grown HMQ-T crystals can be used for investigation of various nonlinear phenomena in the THz spectral region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号