首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
利用辐射能量为80 MeV/u 的12C6+重离子束辐照番茄种子, 辐照剂量分别为30, 60, 90, 120和160 Gy研究其对番茄M1代的生物学效应。结果表明, 随着辐照剂量的增大, 番茄的发芽率和成苗率降低, 且成苗率明显低于发芽率, 发现辐照损伤主要抑制了根的生长; MDA和脯氨酸含量变化的总体趋势为随着辐照剂量的增大先升后降再升高, 说明高剂量C离子辐照对生物膜造成更严重的损伤; APX活性随着辐照剂量的增大呈先升后降再升高的趋势, 表明APX在清除活性氧中起主要作用; POD和SOD活性的总体趋势是随着辐照剂量的增大而降低, 且明显低于对照组。综合分析表明, 12C6+重离子束辐照番茄种子, 对M1代具有明显的损伤效应, 高剂量辐照对番茄种子造成的损伤更大, 使酶的活性降低, 抑制植株生长。 To investigate the M1 biological effects of heavy ions irradiation on Lycopersicon esculentum Mill., its seeds were irradiated by 12C6+heavy ions (80 MeV/u) with the dosages of 30, 60, 90, 120 and 160 Gy respectively . The results showed that with doses increased gradually, germination rate and seedling rate of Lycopersicon esculentum Mill. were decreased, and the latter was lower than the former, mainly due to the inhibition of root growth. The irradiation increased the content of MDA and proline evidently, showing irradiation could damage biomembrane, and also decreased the activities of POD and SOD with distinct inhibition pattern. However, the low dose and high dose irradiation promoted APX activity, illustrating APX was induced to protect irradiation injury. In brief, exposure to 12C6+ heavy ions had obvious injury effects on the seeds of Lycopersicon esculentum Mill.. Heavy ions irradiation damaged biomembrane, inhibited activities of enzymes, and finally inhibited the growth of the first generation of these seeds.  相似文献   

2.
利用兰州重离子研究装置(HIRFL) 提供的12C6+ 离子束辐照菘蓝干种子(辐照剂量为10,35,60,90 和140 Gy,剂量率20 Gy/min),探讨了重离子束辐照对菘蓝M1代的生物学效应。研究发现,不同剂量的12C6+ 离子束辐照后,菘蓝种子的发芽率、成苗率、株高、根长和根冠比等生物学性状以及对菘蓝中靛玉红和4(3H) 喹唑酮含量均发生了变化,其中株高和根长随辐照剂量的增加而降低;菘蓝叶和根中的4(3H) 喹唑酮和靛玉红的含量随辐照剂量增加呈马鞍形增加关系。这表明:12C6+ 重离子束辐照菘蓝种子具有明显的当代损伤效应, 并可显著提高菘蓝中靛玉红和4(3H) 喹唑酮的含量,其辐照适宜诱变剂量为35 Gy。To investigate the M1 biological effects of heavy ions on Isatis indigotica Fort, its dry seeds were irradiated by 12C6+ beam with the dose of 0, 10, 35, 60, 90 and 140 Gy respectively,at the rate of 20 Gy/min delivered by the Heavy Ion Research Facility in Lanzhou (HIRFL). The results showed that biological characters such as germinating rate, germinating potential, survival rate, plant height, root height and root-shoot ratio were changed after irradiation. Moreover, the plant height and root height decreased in a dos dependent manner. The indirubin and 4(3H) quinazolinone content of Isatis indigotica Fort was improved and exhibited obviously “saddle” trends with irradiation dose increasing.Data suggest that exposure with low-dose 12C6+ to seeds of Isatis indigotica Fort has obvious injury effects at the first generation, and the active ingredient content of Isatis indigotica Fort may be improved by carbon ion beamirradiation. It is concluded that the suitable irradiation dose of mutation breeding is 35 Gy for the seeds of Isatis indigotica Fort.  相似文献   

3.
探讨了正常皮肤对重离子辐照急性损伤反应的耐受性, 为重离子治癌临床应用提供安全性检测的实验依据。实验前10 min, 实验猪肌肉注射复方氯胺酮1.2 mg/kg进行麻醉, 然后在兰州重离子研究装置(HIRFL)辐照终端利用12C6+束照射, 辐照剂量分别为0, 12, 21和27 Gy, 辐照分3次完成, 剂量率约为1.2 Gy/min, Bragg峰区照射, 辐照后每隔7 d对照射野拍照并活检取样, 做HE组织病理学观察。不同剂量12C6+离子束辐照实验猪皮肤后, 皮肤外观反应随辐照剂量增大而加快, 表现为肿胀和色素沉积等; 皮肤组织结构的变化明显, 上皮细胞排列紊乱、 萎缩、 空泡变性; 基本恢复正常所需时间也越长, 且都存在明显的剂量效应关系。结果表明, 辐照剂量范围为0—27 Gy时, 重离子对正常皮肤的辐照是安全的。The tolerance of the normal skin to the acute radiation injury reaction induced by heavy ion beams has been studied experimentally. The experimental pigs were injected with 1.2 mg/kg ketamine in 10 min before irradiation and were irradiated with 0, 12 , 21 and 27 Gy 12C6+ ion at a dose rate of 1.2 Gy/min at the Heavy Ion Research Facility in Lanzhou(HIRFL). The total radiation dose was finished by 3 times at Bragg Peak Region of Heavy Ion Beams.The radiation fields of skin were taken photo and performed biopsy. The contaneous tissues of radiation fields were stained by HE and examined histopatholo gical changes every seven days after irradiation. The results indicated that the cutaneous appearance reaction became more faster with radiation dosage rising and presented with swollen, melanin forming and so on after irradiated by the carbon ions at different dosage. The Pathological examination showed noticeable changes in histological and structural of experimental pigs skin, such as atrophy, vacuolation, denaturation and arranged irregularly in epithelial cells. Furthermore, the time for return to normality became longer with the increasing of radiation dosage. All indexes demonstrated correlation between the does and effects. It is concluded that the irradiation of heavy ion beams to normal skin is security when the radiation dose range is about 0—27 Gy.  相似文献   

4.
利用30,90,180Gy3种剂量的12C6+重离子束辐照大葱种子,研究其在细胞水平和农艺性状的诱变效应并进行RAPD分析。通过与M1代的研究结果比较后表明:经过不同剂量12C6+重离子照射后能有效地诱导大葱细胞形成微核和染色体畸变,这种诱变效应,在M2代仍然有所表现。M1代大葱结果期的株高、白长、花序直径和种子产量随辐照剂量增加产生明显差别,其中30Gy辐照组增幅最大。大葱总水溶性蛋白质和维生素C的含量在30Gy组中积累最多,在90Gy组有明显下降。与M1代一致,M2代中大葱染色体微核率及RAPD分析所得的DNA多态性比率仍然与辐照剂量呈正相关,但比率整体下降;说明高能量重离子辐照造成的DNA变异在M2代被修复和淘汰。  相似文献   

5.
辐照诱导的人正常肝细胞系HL-7702细胞延迟效应   总被引:1,自引:0,他引:1  
利用X射线辐照人正常肝细胞系HL-7702细胞, 运用胞质分离阻滞微核法实验检测细胞微核率,AnnexinV FITC细胞凋亡检测试剂盒检测细胞凋亡率, 细胞微核率和凋亡率随着辐照剂量的增加而显著增加。X射线照射后细胞传代培养, 第7代时不同剂量辐照后子代细胞微核率和凋亡率同未辐照细胞相比已无明显区别。 对不同剂量辐照后传代7代的细胞再次照射2.5 Gy的相同剂量,发现它们细胞微核率和凋亡率存在明显差异,即初次受辐照剂量高的细胞, 再次以相同剂量辐照后的微核率和凋亡率也高. 这些结果表明,X射线辐照导致了HL-7702细胞基因组不稳定性这一辐射延迟效应,再次辐照使得辐射的延迟效应得以明显的表现。 Human normal liver cell line HL-7702 cells were irradiated with different doses of X rays. Micronucleus and apoptosis rates in the irradiated cells were measured with cytokinesis block micronucleus method and Annexin V FITC apoptosis detection kit, respectively. Experimental data showed that the micronucleus and apoptosis rates increased obviously with increasing irradiation dose. After seven population doublings, the micronucleus and apoptosis rates of the cells surviving exposure to the X rays reduced to the same levels as non irradiated control cells; the progenies of the cells were secondly exposed to X rays at the same dose of 2.5 Gy. We found that the progenies of the cells surviving the first irradiations of the various doses showed markedly differential micronucleus frequencies and apoptotic rates. Although the same dose of 2.5 Gy was applied in the second irradiations, the micronucleus frequencies and apoptotic rates of the progenies of the cells initially exposed at higher doses were significantly higher than the others. These results indicate that X rays lead to genomic instability in HL 7702 cells, which is an important manifestation of radiation induced delayed effect, and a second radiation stimulus makes the delayed effect in the progeny of the previously irradiated cells be expressed obviously.  相似文献   

6.
考察不同剂量重离子束对北里链霉菌的致死及诱变效应, 可确定最有利于筛选高产菌株的重离子束辐照剂量。 利用不同剂量的重离子束辐照北里链霉菌孢子, 统计了存活率、 致死率、 正负突变率。 结果发现, 在5 Gy重离子辐照时北里链霉菌出现较高致死率, 其后随剂量升高, 致死率变化较平缓。 各辐照剂量下正负突变率相比较, 40 Gy时正突变率最高, 负突变率相对较低, 存活率为0.92%。 因此确定40 Gy是对北里链霉菌高产菌株筛选最有利的辐照剂量。 To define the optimum dose of heavy ion beams for selecting high productive strains, we should study mortality and mutation effects of Streptomyces kitasatoensis irradiated by heavy ion beams in diffe rent doses. In this research, spores of Streptomyces kitasatoensis were irradiated by heavy ion beams with different doses. And survival rate, mortality rate, positive mutation and negative mutation were analyzed statistically. The results showed that high mortality rate appeared from 5 Gy and then the mortality rate curve became gently. Compared the positive and negative mutations in different doses, highest positive mutation was obtained in 40 Gy, while the negative mutation was lower in this dose, and the survival rate was 0.92%. So we defined that optimum dose of heavy ions radiation for Streptomyces kitasatoensis selection was 40 Gy in this experiment.  相似文献   

7.
选用12C6+ 离子束对阿维链霉菌诱变选育高产菌株与原始菌株进行辐照诱变, 研究其累进辐照效应。实验结果表明,在辐照剂量为10 Gy时, 原始菌株比诱变高产菌株存活率高, 抗辐射能力强;辐照剂量高于30 Gy时,诱变高产菌株比原始菌株存活率高, 抗辐射能力强。原始菌株正突变率最高的辐照剂量为50 Gy, 致死率99.43%,正突变率最高, 达34.2%;对诱变高产菌株辐照剂量为30 Gy,致死率94.97%,正突变率最高, 达23.5% 。累进辐照效应降低了最佳辐照剂量。 Mutagenic effect on the mutant high producing strain ZJAV Y1 203 and the original strain ZJAV A1 irradiated by ion beam of 12C6+ have been investigated. The experimental results indicated that the original strain has higher survival rate and stronger resistance to radiation than mutant high producing Strain at dose of 10 Gy. The mutant high producing strain has higher survival rate and stronger resistance to radiation than the original strain at the dose higher than 30 Gy. The lethality was 97% and the highest rate of orthomutation was 34.2%, when ZJAV A1 was irradiated by 50 Gy 12C6+ beam. The lethality was 94.97% and the highest rate of orthomutation was 23.5% when ZJAV Y1 203 was irradiated by 30 Gy 12C6+ beam. The best radiation dose is decreased by progressivity irradiation.  相似文献   

8.
不同剂量重离子辐照玉米自交系的生物学效应比较   总被引:2,自引:0,他引:2  
用12C6+和 36Ar18+离子束分别辐照玉米自交系干种子和浸泡种子, 研究了M1—M3代重离子束辐照的生物学效应。 结果表明: 种子发芽势和发芽率随辐照剂量的增加而下降, 不同生理状态的种子对重离子辐照的敏感性也不同。 一般12C6+ 离子辐照干种子的适宜剂量为20—25 Gy; M1代叶型发生明显的变化, M2代植株在株高、穗位、单株穗数、雄穗花药颜色、粒质、穗行数、粒重和抗性等方面均发生了变化, 并产生了许多有益的变异,包括株高和穗位降低、同位多穗、穗行数和粒重增加、粒质由粉质变为硬粒以及抗锈病和红叶病的植株等, 有益突变的频率达7.0%—17.9%;在M3代出现能够稳定遗传的,并且光合效率增加的有益突变株。由此可见,重离子束辐照是玉米种质改良的一种高效手段。 In order to study biological effects of heavy ion irradiation on maize inbred lines, the agronomic traits and photosynthetic rates were investigated from M1 to M3 of maize seeds irradiated with 12C6+ and 36Ar18+ ions.The results showed that the germination rate and planting percent of maize seeds irradiated were decrease as dosage increasing of heavy ion irradiation. Different physiological status of seeds had disparate sensibility to heavy-ion irradiation and the suitable dosage of 12C6+ ion irradiation was 20—25 Gy for dry maize seeds. The leaf type of the plant happened visible changes in M1 generation. The plant height, spike position, spike number per plant, anther color of staminate,grain texture,spike row,grain weight and resistance had changes in M2 generation. Among them occurred some beneficial mutations that include degrading of plant height and spike position height, multi spike at same position in the plant, increasing of pike row and grain change of grain texture from powder seed to hard seed,resistance to rust disease and red leaf disease and so on. The frequency of beneficial mutation was 7.0%—17.9%. Those beneficial mutations could be stably inherited and mutant plants with high photosynthetic efficiency emerged in M3 generation. The study above showed that heavy ion irradiation is a high performance means for improvement germplasm of maize.  相似文献   

9.
以小麦品种小偃81为材料, 利用低能N+离子, 60Co-γ射线以及紫外线UV-C等为诱变源, 对种子胚部进行辐照处理。 研究其对小麦发芽势、 发芽率、 根长及苗高等生理指标的影响。 以辐照后的幼苗为材料研究了低能N+注入对过氧化氢酶(CAT)、 过氧化物酶(POD)、 超氧化物歧化酶(SOD)活性及还原型谷胱甘肽(GSH)含量的影响。 研究结果表明: N+注入后种子活力先升高后降低, 苗高在5×1017 N+/cm2时显著低于对照; 60Co和紫外线辐照对种子活力有较显著的影响, 辐照后的根长和苗高均显著低于对照; N+束辐照后的幼苗CAT酶活随剂量的变化规律性不明显, POD和SOD酶活总体趋势随剂量的增加先升高后降低, GSH含量随剂量的增大先降低后升高。 由此可知, 辐照诱变可以诱导小麦一系列的生理变化。60Co-γ射线和紫外线UV C对小麦胚根的伤害较大, 导致幼苗在后期大量死亡。N+注入对小麦的损伤效应较60Co和紫外线γ射线和紫外线UV-C小, 一定注量的N+注入处理可促进小麦生长。 In this paper, the biological effects,such as germination percentage, germination index and the length of seedlings and roots were investigated by using low energy N+, 60Co- γ rays and ultraviolet UV C to irradiate the embryos of wheat seeds (Xiaoyan81). The anti oxidative enzyme system (CAT,POD, SOD) and GSH content were studied as well. The results show that the vitality of seed increased and then reduced with increasing the dosage of N+ ion implantation. The length of roots and seedlings were significantly higher than control. The seed vigor was significant effected after irradiated by 60Co-γ rays and ultraviolet UV-C, but the length of roots and seedlings were significantly lower than control. After N+ implantation, the changing pattern of CAT was not obviously. The enzymatic activity of POD and SOD were increased at low dosage and reduced at high dosage. The content of GSH was reduced and then raised. The results proved that the damage induced by γ ray and UV C to the radicle of wheat was severe that result in a large number of seedling died. However the damage induced by N+ implantation was lower than that by rays and UV C irradiation. Certain dosage of ion implantation can promote the growth of wheat.  相似文献   

10.
利用兰州重离子研究装置(HIRFL) 提供的高能12C6+离子束(能量为300 MeV/u,剂量率为0.5 Gy/min) 辐照大鼠离体胸主动脉环,考察了12C6+离子束辐照对主动脉环内皮依赖性舒张功能的影响,并采用NBT 还原法测定血管环生成超氧阴离子(O2􀀀) 水平,加入外源性超氧化物歧化酶(SOD) 干预探讨了O2􀀀在内皮功能损伤中的作用。研究结果表明,2.0,4.0 和6.0 Gy 的12C6+离子束辐照大鼠胸主动脉环后,可致血管内皮依赖性舒张功能的剂量依赖性明显受损(P <0.01 vs control group),并可致血管环NBT 还原能力剂量依赖性增加(4.0 Gy 时,P <0.05;6.0 Gy 时,P <0.01 vs control group)。辐照前加入外源性SOD 对6.0 Gy 12C6+离子束辐照所致血管环NBT 还原能力升高有明显抑制作用(P <0.01),对血管环内皮依赖性舒张功能也有明显的保护作用(P<0.01),但辐照后10 min 加入外源性SOD,其保护作用明显不及前者。结论显示,12C6+ 离子束辐照大鼠胸主动脉环可致血管内皮功能受损,O2 清除剂SOD 对内皮功能受损有保护作用,说明O2􀀀介导了辐照所致内皮功能损伤。Heavy ion beam has many characteristics,and it is expected to be the most suitable radiation therapy technique for malignant tumor. It is lack of depth-understanding on the potential adverse reactions caused by using this technique, because heavy ion radiotherapy is applied to clinical for a short time. Studies have shown that the vascular injury plays a pivotal role in normal tissue damage induced in the conventional radiation therapy, but there was no research report on heavy ion beam irradiation-induced vascular injury. In the present study, the isolated aortic rings of rats were irradiated by 12C6+ ion beam (300 MeV/u, 0.5 Gy/min) delivered by HIRFL(Heavy Ion Research Facility in Lanzhou), the effects of 12C6+ ion beam irradiation on aortic rings with endothelium dependent diastolic function have been investigated.NBT reduction method was used for assaying the vascular ring formation of superoxide anion (O2􀀀) level, and the involvement of superoxide anion in endothelial function injury in rats was investigated through the intervention test of exogenous superoxide dismutase (SOD) on O2. The results showed that, the vascular endothelial dependent vasodilation was impaired significantly (P < 0:01 vs control group) by irradiation with 2.0, 4.0 and 6.0 Gy 12C6+ ion beam in a dosedependent manner, and the NBT reduction of vascular rings increased dose-dependently (P <0.05 at 4.0 Gy, P <0.01 at 6.0 Gy vs control group). Adding exogenous SOD before irradiation could significantly inhibit the increasing of NBT reduction (P<0.01), and also had protective effect on vascular endothelium dependent diastolic function (P<0.01), but 10 min after irradiation with exogenous SOD, its protective function was significantly less than before. Conclusion indicated that 12C6+ ion beam irradiation could cause endothelial function impaired, O2􀀀 scavenger SOD has a protective effect on endothelial dysfunction, suggesting that O2􀀀 mediates endothelial injury induced by heavy ion irradiation.  相似文献   

11.
利用12C6+重离子束对黄花蒿干种子辐照后,利用发芽率、根长、下胚轴长和株高4个指标研究不同剂量12C6+离子束辐照对黄花蒿的生物学效应。结果表明,随着辐照剂量的增加,黄花蒿的存活率和根长都呈现逐渐降低的趋势,而下胚轴长先上升后下降,株高总体呈现下降的趋势,但在60和90 Gy同时存在矮化与增高的植株。利用SRAP (sequence related amplified polymorphism)技术对辐照后M1代的黄花蒿植株进行研究,结果表明对照组和处理组之间的差异体现为特异性条带的变化。综合分析表明,12C6+的重离子辐照黄花蒿干种子可以产生显著的当代损伤效应,同时引起植物DNA的多态性变化。  相似文献   

12.
~(12)C~(6+)离子束辐照紫苏干种子当代效应   总被引:2,自引:0,他引:2  
利用兰州重离子研究装置(HIRFL)提供的12C6+离子束辐照紫苏干种子(辐照剂量为40,80和120Gy,剂量率4Gy/min),探讨了重离子束辐照对紫苏M1代的生物学效应。结果发现,经不同剂量的12C6+离子束辐照后,紫苏种子的发芽率、发芽势、存活率、株高、分枝数、单株产量和千粒重等生物学性状均发生了变化,其中发芽势、单株产量和千粒重随辐照剂量的提高而降低,且有明显的剂量效应关系,但发芽率、大田成活率、株高和分枝数却随辐照剂量的增大,呈现出明显的"抛物线"趋势;紫苏幼苗根尖细胞的微核率和染色体畸变率随辐照剂量增加呈线性增加关系。这表明:12C6+重离子束辐照紫苏种子,具有明显的当代损伤效应,在本试验剂量范围内,低剂量辐照对发芽率和成活率有促进作用。  相似文献   

13.
体细胞同源重组产生的DNA重排、 缺失和复制等是基因组不稳定的重要指标, 以拟南芥菜GUS基因重组报告系R2L100和R3L66为实验材料, 以体细胞同源重组频率(每个植株上的GUS斑点数目)作为评估标准, 研究低能Ar+离子和α粒子辐射对植物基因组稳定性的影响。 结果表明: 30 keV的Ar+离子辐照拟南芥干种子, 在500×1013—3 000×1013 ions/cm2剂量范围内, 同源重组频率与对照相比明显升高, 最大值是对照的2.4倍; 3.3 MeV的α粒子辐照萌发4 d后的幼苗, 同源重组频率随着剂量的增加呈先增后降的变化趋势, 最大值是对照的1.9倍, 对应的辐照剂量是10 Gy。 以上实验结果表明, 低穿透能力的辐射能有效增加植物基因组的不稳定性。 α粒子辐照拟南芥菜幼苗的根, 未受到辐照的地上部分的同源重组频率较对照增加2.5倍, 表明低能离子诱导的基因组不稳定信号在植物个体水平是可以长程输运的。 以上结果从另一个侧面解释了低能离子的诱变机制。 The somatic homologous recombination was frequently used to evaluate genome stability because it can result in DNA changes, such as rearrangement, deletion and duplication. In this paper, we used Arabidopsis thaliana transgenic for GUS recombination substrate (R2L100 and R3L66) to study the genomic instability induced by low energy ion and α particle characteristic of short penetrating properties. The dry seeds of R3L66 line were irradiated by 30 keV Argon ion, the Homologous Recombination Frequency (HRF) had a significant increase at dose range of 500×1013—3 000×1013 ions/cm2. The highest level of HRF was 2.42 fold over the control. The 3.3 MeV α particles were used to radiate 4 day old seedlings of R2L100 line. The HRFs had a dose dependent increase at dose of 1—10 Gy, and a dose dependent decrease at 10—100 Gy. The highest level of HRF induced by α particle was 1.9 fold over control at the dose of 10 Gy. These results indicate that short penetrating irradiation can effectively trigger the plant genomic instability at the level of plant. The local irradiation on the roots of R2L100 by α particle resulted in a 2.5 fold increase of HRF in non irradiated aerial plant,which indicates that a signal of genomic instability generated by α particle radiation can systemically travel in whole plant. It is possible that the genome instability induced by low energy ion is a major part of its mutagenic mechanism.  相似文献   

14.
马铃薯重离子辐射育种研究   总被引:3,自引:0,他引:3  
在2000—2005年将杂交技术和重离子辐射相结合, 采用55 MeV/u的 40Ar17+离子对马铃薯杂交种子和微型薯进行了不同剂量的贯穿辐射或离子注入处理。 结果表明, 对马铃薯微型薯进行重离子辐射能显著提高块茎的产量。 而杂交技术和重离子辐射相结合是一种更高效的育种方式, 不仅能提高块茎的增产幅度, 还能改善其加工品质。 微型薯重离子辐射的最佳剂量为60 Gy, 杂交种子辐射的适宜剂量范围在60—120 Gy之间。 通过对辐射后代的多年选育, 获得了几个产量显著高于对照、 品质优良的马铃薯新品系。 The effect of 55 MeV/u 40Ar17+ irradiation with different doses on hybrid seeds and micro tubers of potatoes were studied from year 2000 to 2005. The results showed that the yields of potatoes irradiated by heavy ions grew significantly. This new mutation method combining cross breeding technique with heavy ion irradiation is more effective, which could not only increase the yield of potatoes, but also improve their quality. The optimal mutagenic dose was 60 Gy to micro tubers of potatoes, 60—120 Gy to hybrid seeds, respectively. Finally, several new lines which have higher yield and better qualities were obtained through multi generation screening from the offspring of irradiated potatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号