首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
定向诱导基因组局部突变技术(Targeting Induced Local Lesions IN Genomes, 简称TILLINC)是一种全新的、高通量和低成本反向遗传学研究方法。近年来, 随着突变筛选技术的革新, TILLING技术平台日趋多元化, 使得TILLING技术的操作更为简单﹑快速, 并广泛应用于作物育种研究领域。简要介绍了TILLING技术平台的最新发展动态, 并初步探讨了将辐射诱变处理与TILLING高通量筛选相结合在诱变育种中的应用前景。To investigate the M1 biological effects of heavy ions irradiation on Lycopersicon esculentum Mill., its seeds were irradiated by 12C6+heavy ions (80 MeV/u) with the dosages of 30, 60, 90, 120 and 160 Gy respectively . The results showed that with doses increased gradually, germination rate and seedling rate of Lycopersicon esculentum Mill. were decreased, and the latter was lower than the former, mainly due to the inhibition of root growth. The irradiation increased the content of MDA and proline evidently, showing irradiation could damage biomembrane, and also decreased the activities of POD and SOD with distinct inhibition pattern. However, the low dose and high dose irradiation promoted APX activity, illustrating APX was induced to protect irradiation injury. In brief, exposure to 12C6+ heavy ions had obvious injury effects on the seeds of Lycopersicon esculentum Mill.. Heavy ions irradiation damaged biomembrane, inhibited activities of enzymes, and finally inhibited the growth of the first generation of these seeds.  相似文献   

2.
利用兰州重离子研究装置(HIRFL) 提供的12C6+ 离子束辐照菘蓝干种子(辐照剂量为10,35,60,90 和140 Gy,剂量率20 Gy/min),探讨了重离子束辐照对菘蓝M1代的生物学效应。研究发现,不同剂量的12C6+ 离子束辐照后,菘蓝种子的发芽率、成苗率、株高、根长和根冠比等生物学性状以及对菘蓝中靛玉红和4(3H) 喹唑酮含量均发生了变化,其中株高和根长随辐照剂量的增加而降低;菘蓝叶和根中的4(3H) 喹唑酮和靛玉红的含量随辐照剂量增加呈马鞍形增加关系。这表明:12C6+ 重离子束辐照菘蓝种子具有明显的当代损伤效应, 并可显著提高菘蓝中靛玉红和4(3H) 喹唑酮的含量,其辐照适宜诱变剂量为35 Gy。To investigate the M1 biological effects of heavy ions on Isatis indigotica Fort, its dry seeds were irradiated by 12C6+ beam with the dose of 0, 10, 35, 60, 90 and 140 Gy respectively,at the rate of 20 Gy/min delivered by the Heavy Ion Research Facility in Lanzhou (HIRFL). The results showed that biological characters such as germinating rate, germinating potential, survival rate, plant height, root height and root-shoot ratio were changed after irradiation. Moreover, the plant height and root height decreased in a dos dependent manner. The indirubin and 4(3H) quinazolinone content of Isatis indigotica Fort was improved and exhibited obviously “saddle” trends with irradiation dose increasing.Data suggest that exposure with low-dose 12C6+ to seeds of Isatis indigotica Fort has obvious injury effects at the first generation, and the active ingredient content of Isatis indigotica Fort may be improved by carbon ion beamirradiation. It is concluded that the suitable irradiation dose of mutation breeding is 35 Gy for the seeds of Isatis indigotica Fort.  相似文献   

3.
探讨了正常皮肤对重离子辐照急性损伤反应的耐受性, 为重离子治癌临床应用提供安全性检测的实验依据。实验前10 min, 实验猪肌肉注射复方氯胺酮1.2 mg/kg进行麻醉, 然后在兰州重离子研究装置(HIRFL)辐照终端利用12C6+束照射, 辐照剂量分别为0, 12, 21和27 Gy, 辐照分3次完成, 剂量率约为1.2 Gy/min, Bragg峰区照射, 辐照后每隔7 d对照射野拍照并活检取样, 做HE组织病理学观察。不同剂量12C6+离子束辐照实验猪皮肤后, 皮肤外观反应随辐照剂量增大而加快, 表现为肿胀和色素沉积等; 皮肤组织结构的变化明显, 上皮细胞排列紊乱、 萎缩、 空泡变性; 基本恢复正常所需时间也越长, 且都存在明显的剂量效应关系。结果表明, 辐照剂量范围为0—27 Gy时, 重离子对正常皮肤的辐照是安全的。The tolerance of the normal skin to the acute radiation injury reaction induced by heavy ion beams has been studied experimentally. The experimental pigs were injected with 1.2 mg/kg ketamine in 10 min before irradiation and were irradiated with 0, 12 , 21 and 27 Gy 12C6+ ion at a dose rate of 1.2 Gy/min at the Heavy Ion Research Facility in Lanzhou(HIRFL). The total radiation dose was finished by 3 times at Bragg Peak Region of Heavy Ion Beams.The radiation fields of skin were taken photo and performed biopsy. The contaneous tissues of radiation fields were stained by HE and examined histopatholo gical changes every seven days after irradiation. The results indicated that the cutaneous appearance reaction became more faster with radiation dosage rising and presented with swollen, melanin forming and so on after irradiated by the carbon ions at different dosage. The Pathological examination showed noticeable changes in histological and structural of experimental pigs skin, such as atrophy, vacuolation, denaturation and arranged irregularly in epithelial cells. Furthermore, the time for return to normality became longer with the increasing of radiation dosage. All indexes demonstrated correlation between the does and effects. It is concluded that the irradiation of heavy ion beams to normal skin is security when the radiation dose range is about 0—27 Gy.  相似文献   

4.
利用兰州重离子研究装置(HIRFL) 提供的高能12C6+离子束(能量为300 MeV/u,剂量率为0.5 Gy/min) 辐照大鼠离体胸主动脉环,考察了12C6+离子束辐照对主动脉环内皮依赖性舒张功能的影响,并采用NBT 还原法测定血管环生成超氧阴离子(O2􀀀) 水平,加入外源性超氧化物歧化酶(SOD) 干预探讨了O2􀀀在内皮功能损伤中的作用。研究结果表明,2.0,4.0 和6.0 Gy 的12C6+离子束辐照大鼠胸主动脉环后,可致血管内皮依赖性舒张功能的剂量依赖性明显受损(P <0.01 vs control group),并可致血管环NBT 还原能力剂量依赖性增加(4.0 Gy 时,P <0.05;6.0 Gy 时,P <0.01 vs control group)。辐照前加入外源性SOD 对6.0 Gy 12C6+离子束辐照所致血管环NBT 还原能力升高有明显抑制作用(P <0.01),对血管环内皮依赖性舒张功能也有明显的保护作用(P<0.01),但辐照后10 min 加入外源性SOD,其保护作用明显不及前者。结论显示,12C6+ 离子束辐照大鼠胸主动脉环可致血管内皮功能受损,O2 清除剂SOD 对内皮功能受损有保护作用,说明O2􀀀介导了辐照所致内皮功能损伤。Heavy ion beam has many characteristics,and it is expected to be the most suitable radiation therapy technique for malignant tumor. It is lack of depth-understanding on the potential adverse reactions caused by using this technique, because heavy ion radiotherapy is applied to clinical for a short time. Studies have shown that the vascular injury plays a pivotal role in normal tissue damage induced in the conventional radiation therapy, but there was no research report on heavy ion beam irradiation-induced vascular injury. In the present study, the isolated aortic rings of rats were irradiated by 12C6+ ion beam (300 MeV/u, 0.5 Gy/min) delivered by HIRFL(Heavy Ion Research Facility in Lanzhou), the effects of 12C6+ ion beam irradiation on aortic rings with endothelium dependent diastolic function have been investigated.NBT reduction method was used for assaying the vascular ring formation of superoxide anion (O2􀀀) level, and the involvement of superoxide anion in endothelial function injury in rats was investigated through the intervention test of exogenous superoxide dismutase (SOD) on O2. The results showed that, the vascular endothelial dependent vasodilation was impaired significantly (P < 0:01 vs control group) by irradiation with 2.0, 4.0 and 6.0 Gy 12C6+ ion beam in a dosedependent manner, and the NBT reduction of vascular rings increased dose-dependently (P <0.05 at 4.0 Gy, P <0.01 at 6.0 Gy vs control group). Adding exogenous SOD before irradiation could significantly inhibit the increasing of NBT reduction (P<0.01), and also had protective effect on vascular endothelium dependent diastolic function (P<0.01), but 10 min after irradiation with exogenous SOD, its protective function was significantly less than before. Conclusion indicated that 12C6+ ion beam irradiation could cause endothelial function impaired, O2􀀀 scavenger SOD has a protective effect on endothelial dysfunction, suggesting that O2􀀀 mediates endothelial injury induced by heavy ion irradiation.  相似文献   

5.
不同剂量重离子辐照玉米自交系的生物学效应比较   总被引:2,自引:0,他引:2  
用12C6+和 36Ar18+离子束分别辐照玉米自交系干种子和浸泡种子, 研究了M1—M3代重离子束辐照的生物学效应。 结果表明: 种子发芽势和发芽率随辐照剂量的增加而下降, 不同生理状态的种子对重离子辐照的敏感性也不同。 一般12C6+ 离子辐照干种子的适宜剂量为20—25 Gy; M1代叶型发生明显的变化, M2代植株在株高、穗位、单株穗数、雄穗花药颜色、粒质、穗行数、粒重和抗性等方面均发生了变化, 并产生了许多有益的变异,包括株高和穗位降低、同位多穗、穗行数和粒重增加、粒质由粉质变为硬粒以及抗锈病和红叶病的植株等, 有益突变的频率达7.0%—17.9%;在M3代出现能够稳定遗传的,并且光合效率增加的有益突变株。由此可见,重离子束辐照是玉米种质改良的一种高效手段。 In order to study biological effects of heavy ion irradiation on maize inbred lines, the agronomic traits and photosynthetic rates were investigated from M1 to M3 of maize seeds irradiated with 12C6+ and 36Ar18+ ions.The results showed that the germination rate and planting percent of maize seeds irradiated were decrease as dosage increasing of heavy ion irradiation. Different physiological status of seeds had disparate sensibility to heavy-ion irradiation and the suitable dosage of 12C6+ ion irradiation was 20—25 Gy for dry maize seeds. The leaf type of the plant happened visible changes in M1 generation. The plant height, spike position, spike number per plant, anther color of staminate,grain texture,spike row,grain weight and resistance had changes in M2 generation. Among them occurred some beneficial mutations that include degrading of plant height and spike position height, multi spike at same position in the plant, increasing of pike row and grain change of grain texture from powder seed to hard seed,resistance to rust disease and red leaf disease and so on. The frequency of beneficial mutation was 7.0%—17.9%. Those beneficial mutations could be stably inherited and mutant plants with high photosynthetic efficiency emerged in M3 generation. The study above showed that heavy ion irradiation is a high performance means for improvement germplasm of maize.  相似文献   

6.
在液氮低温下用400 keV的Ne2+离子束对Gd2Ti2O7多晶烧绿石进行了辐照实验研究, 离子束辐照量范围为5×1014—1×1016ions/cm2。利用掠X射线衍射技术对样品辐照层的结构变化进行了分析表征, X射线的掠射角分别为γ=0.25°, 0.5°, 1°和3°。结果表明: 在该实验条件的离子束辐照下, Gd2Ti2O7辐照层会发生明显的体积肿胀效应, 体积肿胀程度随入射离子束辐照量的增大而增大; 在同一辐照量下, 辐照层的体积肿胀程度也随X射线入射角的增大而增大。当辐照量达到1×1016ions/cm2时, 辐照层发生非晶化相变。Polycrystalline pyrochlore Gd2Ti2O7 compounds were irradiated with 400 keV Ne2+ ions at cryogenic temperature (~77 K). The irradiation fluences was ranging from 5×1014 to 1×1016 ions/cm2, corresponding to a peak ballistic damage dose of ~0.16 to 3.3 displacements per atom . Irradiation\|induced structural evolution was examined using grazing incidence X\|ray diffraction (GIXRD) at angles from 0.25° to 3° degrees. It was found that the lattice parameter increases as a function of (1) X\|ray incident angle and (2) ion irradiation fluence, suggesting that the irradiated layer is volumetrically swelled compared with the underlying un\|irradiated substrate. At ion fluence of 1×1016 ions/cm2, the irradiation layer was found to be amorphous.  相似文献   

7.
钨辐射损伤随辐照剂量变化的重离子辐照模拟研究   总被引:1,自引:0,他引:1  
采用重离子辐照模拟方法和正电子湮没寿命测量技术研究了钨辐射损伤随辐照剂量的变化。20,60和90dpa(每个原子的位移次数)辐照损伤水平的实验结果表明,辐照在钨中产生单空位、双空位、位错和空位团等缺陷;随辐照剂量的增大,单空位、双空位和位错浓度增加,空位团的尺度和浓度都随之增大。Radiation damage in W has been studied as a function of irradiation dose by heavy ion simulation and positron annihilation lifetime measurement. The experimental results of 20, 60 and 90 dpa irradiations illustrate that the mono-and di-vacancies, dislocations and vacancy clusters are produced by the irradiation. The concentrations of the mono-and di-vacancies and dislocations and both the concentration and size of the vacancy clusters or voids all increase with the increasing of the irradiation dose.  相似文献   

8.
研究大蒜素重要活性成分二烯丙基二硫( Diallyl disulfide, 简称DADS) 对12C6+离子束辐照损伤小鼠的保护作用。利用4 Gy 剂量12C6+离子束对不同浓度DADS 预处理的雄性昆明小鼠进行单次全身照射。随后检测骨髓细胞微核率和肝组织中丙二醛(MDA) 含量、蛋白质总羰基含量、总抗氧化能力( TAOC)及谷丙转氨酶(ALT ) 活性。结果显示,与单纯照射组相比,低浓度DADS 预处理组骨髓细胞微核率和肝组织ALT 活性均显著降低(p<0.001),而肝组织T-AOC明显增强( p < 0.05 );中浓度DADS 预处理组肝组织中MDA 含量和蛋白质总羰基含量均显著减少( p < 0.05 )。结果提示,DADS通过抑制氧化应激,有效地保护了脂质、蛋白质和遗传物质免受12C6+离子束辐照引起的损伤。The radioprotective effect of Diallyl disulfide (DADS) on 12C6+ ion irradiation was studied. Pretreated with DADS of different concentration, male Kung-Ming mice were exposed to whole body irradiation with dosage of 4 Gy 12C6+ ion. The animals were sacrificed after irradiation. Then the bone marrow cells micronucleus rate, malondialdehyde (MDA) levels, content of protein carbonylation, total antioxidant capacity ( T-AOC) and alanine aminotransferase ( ALT ) activity were measured. As compared with those in irradiated group, the ratio of micronucleus cells in marrow and the hepatic ALT activity in the pretreatment group with low dose DADS decreased significantly ( p < 0.001 ). Similarly,the content of protein carbonylation and the levels of MDA droped dramatically in the group with middle dose DADS treatment ( p < 0.05 ). On the contrary, the hepatic T-AOC increased markedly in the group of pretreatment with low dose DADS ( p < 0.05 ). The results showed that DADS protect lipoid, protein and genetic material from 12C6+ ion irradiation by right of resisting oxidative stress.  相似文献   

9.
本研究旨在探讨羧甲基-β-1,3葡聚糖(CMG)对人肝癌HepG2细胞X射线或12C6+离子束辐射敏感性的影响。首先用CCK-8法检测CMG对HepG2细胞的生长抑制情况,得到半数抑制浓度(IC50)为120.6μg/mL。用浓度为0.1×IC50的CMG预处理HepG2细胞24 h,再给予2 Gy X射线或12C6+离子束辐照(CMG+辐照组);CMG未处理组直接接受2 Gy X射线或12C6+离子束辐照(辐照组)。对比分析辐照组和CMG+辐照组细胞的克隆存活、DNA损伤、凋亡与周期分布、细胞内活性氧(ROS)水平。发现:与X射线辐照组相比,相同剂量的12C6+离子辐照组克隆存活率更小,DNA损伤和周期阻滞更加严重,细胞凋亡率和细胞内ROS水平也更高。与单独X射线或12C6+离子束辐照组相比,CMG+辐照组克隆存活率明显降低,细胞凋亡率随辐照后CMG作用时间的延长而明显增加,CMG使辐照后细胞内ROS维持在一个较高的水平,同时CMG明显加重了单独辐照诱导的DNA损伤和周期阻滞。结果表明,与X射线相比,HepG2细胞对相同剂量的12C6+离子辐射更敏感;CMG可增加HepG2细胞对X射线或12C6+离子辐射的敏感性;CMG可能通过增加受照HepG2细胞内的ROS水平,加剧辐照诱导的DNA损伤,促进辐射诱导细胞凋亡而起到辐射增敏作用。This study aims to investigate the effect of carboxymethy-β-1, 3-glucan (CMG) on the sensitivity of human hepatoma HepG2 cells to X-rays or 12C6+ ions irradiation. First, the inhibitory effect of CMG on the growth of HepG2 cells was detected by CCK-8 assay, and the half maximal inhibitory concentration (IC50) was 120.6 μg/mL. HepG2 cells were pretreated with CMG at a concentration of 0.1×IC50 for 24 h and then irradiated with 2 Gy X-ray or 12C6+ ion beams (CMG + irradiation group). CMG untreated group was directly irradiated by 2 Gy X-rays or 12C6+ ions beam (irradiation group). The clone survival, DNA damage, cell apoptosis, cell cycle distribution, and intracellular reactive oxygen species (ROS) levels in irradiation group and CMG + irradiation group were comparatively analyzed. The results showed that the clone survival rate was lower, DNA damage and cycle arrest were more serious, and the rate of apoptosis and intracellular ROS levels were higher in 12C6+ ions irradiation group than those in the same dose of X-rays irradiation group. Compared with X-rays or 12C6+ ions irradiation group, the clone survival rate of CMG + irradiation group was significantly decreased, and the apoptosis rate significantly increased with the prolongation of CMG treatment post-irradiation; CMG maintained intracellular ROS at a higher level after irradiation, CMG also significantly aggravated radiation-induced DNA damage and cycle arrest. These results indicated that HepG2 cells were more sensitive to 12C6+ ions radiation than those at the same dose of X-rays. CMG increased the sensitivity of HepG2 cells to X-rays or 12C6+ ions irradiation by increasing intracellular ROS level, exacerbating radiation-induced DNA damage and promoting radiation-induced apoptosis in irradiated HepG2 cells.  相似文献   

10.
用 Raman散射和 XPS技术分析了能量为几百 ke V到几百 Me V的多种离子在 C60 薄膜中引起的辐照效应.分析结果表明 ,在低能重离子辐照的 C60 薄膜中 ,其晶态向非晶态的转变过程是由核碰撞主导的.在快离子 (1 2 0 ke V的 H离子和171.2 Me V的 S离子 )辐照的情况下,电子能损起主导作用.发现在H离子辐照过程中,电子能损有明显的退火效应 ,致使 C60 由晶态向非晶态转变的过程中,经历了一个石墨化的中间过程;而在 S离子辐照的情况下 ,电子能损的破坏作用超过了退火效应 ,因此 ,在C60 由晶态向非晶态转变的过程中,无石墨化的中间过程.Irradiation effecs (mainly including transformation from crystalline into amorphous state) of C 60 films induced by 120 keV H, He, N, Ar, Fe and Mo ions, 240 keV and 360 keV Ar ions, and 171.2 MeV, 125.3 MeV and 75.8 MeV S ions were analysed by means of Raman scattering and XPS technique. The analysis results indicate that amorphization process in the cases of N, Ar, Fe and Mo ions irradiation is dominated by nuclear collision, but in the case of H ion irradiation, the process is...  相似文献   

11.
Zheng-Zhao Lin 《中国物理 B》2022,31(3):36103-036103
AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated with heavy ions at various fluences. After irradiation by 2.1 GeV181 Ta32+ ions, the electrical characteristics of the devices significantly decreased. The threshold voltage shifted positively by approximately 25% and the saturation currents decreased by approximately 14%. Defects were induced in the band gap and the interface between the gate and barrier acted as tunneling sites, which increased the gate current tunneling probability. According to the pulsed output characteristics, the amount of current collapse significantly increased and more surface state traps were introduced after heavy ion irradiation. The time constants of the induced surface traps were mainly less than 10 μs.  相似文献   

12.
The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2.  相似文献   

13.
重离子辐射具有独特的深度剂量分布和较高的相对生物学效应,被认为是理想的放疗手段。重离子的生物学效应在径迹形成过程中由多个物理参量共同决定,而这些物理参量和离子入射深度紧密相关,因此明确离子不同入射深度的生物学效应对重离子肿瘤放疗方案的设计和优化有着重要的理论和应用价值。使用兰州重离子研究装置HIRFL-CSRe 终端的碳离子束作为辐射源,以活体模式动物线虫作为实验对象,以线虫生殖细胞的凋亡水平作为生物学检测终点,研究了10 和20 Gy 碳离子辐射在辐射的入口、坪区和峰区的当代生物学效应和对后代个体基因组不稳定性的影响。结果表明:10 和20 Gy 碳离子辐射在三个不同的辐照区域内均显著增加了辐射当代的线虫生殖腺细胞的凋亡水平,并表现出一定的辐射区域和辐射剂量依赖性。同时,辐射诱导的后代个体基因组不稳定性也表现出一定的辐射区域和辐射剂量相关性。Heavy ion irradiation is a perfect means in radio-therapy due to its special depth dose distribution and high relative biological effects. The biological effects of heavy ion irradiation are determined by some major physical parameters, and vary along the tracks of heavy ions. Therefore, it is very significant for the tumor radio-therapy to investigate the biological effects along whole range of heavy ion radiation. In the present study, Caenorhabditis elegans, a model in vivo, was irradiated by carbon ion beams from HCRFL-CSRe, The level of germ cell apoptosis of worms was used as a checking endpoint for DNA damage, the effects of carbon irradiation located in the entrance, plateau and peak regions on the genomic instability of the irradiated worm and their progeny were detected. The results showed that the 10 and 20 Gy of carbon ion radiations led to the increased germ cell apoptosis in irradiated worms and these effects depend on the worm location along the range of carbon ions and the irradiation dosage. The results also suggested that heavy ion irradiation induced the up-regulated genomic instability in their progeny, and might be related to both the irradiation dose and the irradiated location.  相似文献   

14.
载能重离子与高能中子在材料中能够产生相似的级联碰撞损伤,加之重离子具有大的离位损伤截面和在材料样品中低的感生放射性,载能重离子束成为模拟先进核能装置内部结构材料辐照损伤的重要手段。HIRFL能区的重离子在结构材料中的射程一般远大于晶粒尺寸,因此能够产生材料体损伤,借助小样品技术可以获得材料力学性能变化(尤其辐照脆化)的有用信息,为探讨材料辐照损伤微结构和宏观力学性能变化的关联提供了重要条件。本文简要介绍了近年来我们基于HIRFL高能离子束开展的聚变堆候选材料辐照损伤的研究,包括低活化钢的辐照脆化行为、氧化物弥散强化(ODS)铁素体钢的结构优化对于抗辐照性能的影响、不同载能粒子辐照条件下铁素体/马氏体钢的辐照肿胀数据的关联,以及高能重离子辐照的钨材料中氢同位素的滞留行为。研究表明,结合特殊的测试技术及数据分析方法,高能重离子可作为核能结构材料辐照损伤研究及评估的有效手段。Because of the similarity in cascade damage structure in materials produced by energetic heavy ions and by fast neutrons, and the high displacement rate and low induced radioactivity of samples by heavy ions, heavy ion beam becomes an important tool to simulate radiation damage by energetic neutrons in materials in advanced nuclear energy systems. The ranges of heavy ions provided by HIRFL (Heavy Ion Research Facility in Lanzhou) are generally much larger than the mean dimensions of grains in alloys candidate to advanced nuclear reactors, and is capable of producing radiation damage in bulk scale. It therefore makes possible the evaluation of change of mechanical properties including the radiation induced embrittlement from the irradiated specimens by using miniaturized specimen techniques. In the present paper, we provide an introduction of our recent studies of radiation damage of materials candidate to future fusion reactors by utilizing heavy ion beams in HIRFL.The studies include issues as follows:ductility loss of RAFM steels causes by high-energy Ne ions, impact of oxide dispersoids on the radiation resistance of ODS ferritic steels, correlation of void swelling of ferritic/martensitic steels under different particle irradiation, and behavior of deuterium retention in tungsten under irradiation with high-energy heavy ions. The results show that high-energy heavy ions can be used as a tool to efficiently investigate or evaluate radiation damage in structure materials if combined with some special test techniques and data analysis.  相似文献   

15.
~(12)C~(6+)离子束辐照紫苏干种子当代效应   总被引:2,自引:0,他引:2  
利用兰州重离子研究装置(HIRFL)提供的12C6+离子束辐照紫苏干种子(辐照剂量为40,80和120Gy,剂量率4Gy/min),探讨了重离子束辐照对紫苏M1代的生物学效应。结果发现,经不同剂量的12C6+离子束辐照后,紫苏种子的发芽率、发芽势、存活率、株高、分枝数、单株产量和千粒重等生物学性状均发生了变化,其中发芽势、单株产量和千粒重随辐照剂量的提高而降低,且有明显的剂量效应关系,但发芽率、大田成活率、株高和分枝数却随辐照剂量的增大,呈现出明显的"抛物线"趋势;紫苏幼苗根尖细胞的微核率和染色体畸变率随辐照剂量增加呈线性增加关系。这表明:12C6+重离子束辐照紫苏种子,具有明显的当代损伤效应,在本试验剂量范围内,低剂量辐照对发芽率和成活率有促进作用。  相似文献   

16.
在地面模拟微重力的情况下, 应用碱性单细胞凝胶电泳(SCGE)技术对80 MeV/u Ne离子辐射诱发人血淋巴细胞DNA损伤修复效应进行了研究。 在不同时刻对相同剂量辐照后的淋巴细胞经单细胞电泳处理后显示, 在模拟微重力下孵育的彗星尾更长, 彗星头面积更小。 这表明, 相对地面环境而言, 模拟微重力环境对淋巴细胞的DNA损伤修复有一定的抑制作用。 Effect of the modeled microgravity (MMG) on heavy ion induced lymphocytes DNA repair by using single cell gel electrophoresis (SCGE) has been studied. The results showed that residual DNA damage induced by Ne ions irradiation increased more in cultures incubated in MMG than in 1 g, which indicated that MMG incubation after Ne ions irradiation reduce the DNA damage repair capacity.  相似文献   

17.
概述了利用穆斯堡尔效应开展的固体材料快重离子辐照效应研究的部分结果 ,并对建立在兰州重离子加速器 (HIRFL)上的在束穆斯堡尔谱学研究装置及其应用作了简要的介绍.Mssbauer spectroscopy study of irradiation effects induced by swift heavy ions in solid materials were briefly presented.Amorphization phenomenon of yttrium iron garnet irradiated by 1 GeV Ar ions has been investigated. For the first time, the nearly complete amorphous state was observed. Stainless steel 316L samples were irradiated with 54 MeV C ions and phase transformation of the samples was observed. HT 9 ferrite steel was irradiated with 510 MeV C ions. Its phase...  相似文献   

18.
As-quenched and stress field annealed FINEMET ribbons were irradiated with 246?MeV energy Kr, 470?MeV energy Xe and 720?MeV energy Bi ions and investigated by 57Fe M?ssbauer spectroscopy and XRD methods. The change in relative areas of the 2nd and 5th lines in the M?ssbauer spectra indicated significant changes in the magnetic anisotropy of both as-quenched and stress annealed FINEMET due to irradiation with swift heavy ions. Differences were observed between the effect of irradiations with various ions having different energy and fluence. The effect of irradiation on the magnetic orientation in FINEMET was explained in terms of radiation induced defects. The swift heavy ion irradiation can be applied to produce FINEMET ribbons with more favorable soft magnetic properties for technological applications.  相似文献   

19.
《中国物理 B》2021,30(5):56105-056105
The relationship between ions irradiation and the induced microstructures(point defects, dislocations, clusters, etc.)could be better analyzed and explained by simulation. The mean field rate theory and cluster dynamics are used to simulate the effect of implanted Fe on the point defects concentration quantitatively. It is found that the depth distribution of point defect concentration is relatively gentle than that of damage calculated by SRIM software. Specifically, the damage rate and point defect concentration increase by 1.5 times and 0.6 times from depth of 120 nm to 825 nm, respectively. With the consideration of implanted Fe ions, which effectively act as interstitial atoms at the depth of high ion implantation rate, the vacancy concentration C_v decreases significantly after reaching the peak value, while the interstitial atom concentration C_i increases significantly after decline of the previous stage. At the peak depth of ion implantation, C_v dropped by 86%, and C_i increased by 6.2 times. Therefore, the implanted ions should be considered into the point defects concentration under high dose of heavy ion irradiation, which may help predict the concentration distribution of defect clusters, further analyzing the evolution behavior of solute precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号