首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
将常系数线性微分方程转化为一阶常系数线性微分方程组,并利用线性微分方程组的基解矩阵的性质和矩阵指数的性质以及非齐次线性微分方程组的常数变易公式,得到了常系数非齐次线性微分方程的积分形式的特解公式,并通过实例说明所得结论的有用性.  相似文献   

2.
任志茹 《计算数学》2013,35(3):305-322
三阶线性常微分方程在天文学和流体力学等学科的研究中有着广泛的应用.本文介绍求解三阶线性常微分方程由Sinc方法离散所得到的线性方程组的结构预处理方法.首先, 我们利用Sinc方法对三阶线性常微分方程进行离散,证明了离散解以指数阶收敛到原问题的精确解.针对离散后线性方程组的系数矩阵的特殊结构, 提出了结构化的带状预处理子,并证明了预处理矩阵的特征值位于复平面上的一个矩形区域之内.然后, 我们引入新的变量将三阶线性常微分方程等价地转化为由两个二阶线性常微分方程构成的常微分方程组, 并利用Sinc方法对降阶后的常微分方程组进行离散.离散后线性方程组的系数矩阵是分块2×2的, 且每一块都是Toeplitz矩阵与对角矩阵的组合.为了利用Krylov子空间方法有效地求解离散后的线性方程组,我们给出了块对角预处理子, 并分析了预处理矩阵的性质.最后, 我们对降阶后二阶线性常微分方程组进行了一些比较研究.数值结果证实了Sinc方法能够有效地求解三阶线性常微分方程.  相似文献   

3.
李宝凤 《数学杂志》2015,35(6):1353-1362
本文研究了一类变系数分数阶微分方程的数值解法问题. 利用Cheyshev小波推导出的分数阶微分方程的算子矩阵把分数阶微分方程转换为代数方程组. 同时给出了Cheyshev小波基的收敛性和误差估计表达式, 并给出数值算例说明所提方法的精确性和有效性  相似文献   

4.
讨论一阶常系数线性微分方程组通解问题,给出一种新的向量解法.  相似文献   

5.
主要采用分数阶的幂级数展开的方法,研究α阶和2α阶非齐次线性微分方程解的形式.改进了原有的齐次变系数的分数阶微分方程关于数值解的结论.  相似文献   

6.
刘玲  苏农 《工科数学》2012,(6):91-95
给出一阶线性非齐次微分方程的积分因子解法,避免了常数变易法带来的不便和不自然;给出,n阶常系数非齐次线性微分方程的降阶解法,可以看出,高阶常系数线性非齐次微分方程最终都可以归结为求解一阶线性微分方程,从而避免了待定系数法求非齐次方程特解的繁琐,并最终说明了一般微积分教材中只给出两种类型常系数非齐次线性微分方程的待定系数解法的原因.  相似文献   

7.
用无限阶Toeplitz矩阵求常系数微分方程的级数解   总被引:1,自引:0,他引:1  
李大林 《大学数学》2007,23(3):100-103
无限阶Toeplitz矩阵的属于0的特征向量可递推地求得,可表示常系数齐次微分方程的解.用它的逆可求得常系数非齐次微分方程的特解.  相似文献   

8.
研究了Caputo和Riemann-Liouville两型分数阶微分方程的比较定理.首先,讨论了一类线性分数阶微分不等式解得非负性.其次,引入单边Lipschitz条件,将微分方程解的比较问题化为线性微分不等式非负解问题,通过线性分数阶微分方程的求解,得到分数阶比较定理.最后,为进一步说明结论,给出了两个数值仿真例子.  相似文献   

9.
本文对一阶常系数齐次线性微分方程组,提出一种新的解法.  相似文献   

10.
简化了用"常数变易"法求常系数非齐次线性微分方程特解的过程,给出了求二阶常系数非齐次线性微分方程特解的一般公式.并将该方法推广到对n阶方程的降阶,从而求其特解.此方法简单实用,且运算量小.  相似文献   

11.
This paper studies the variation of constant formulae for linear Caputo fractional delay differential systems. We discuss the exponential estimates of the solutions for linear time invariant fractional delay differential systems by using the Gronwall's integral inequality. The variation of constant formula for linear time invariant fractional delay differential systems is obtained by using the Laplace transform method. In terms of the superposition principle of linear systems and fundamental solution matrix, we also establish the variation of constant formula for linear time varying fractional delay differential systems. The obtained results generalize the corresponding ones of integer-order delayed differential equations.  相似文献   

12.
分别给出了常系数线性微分方程组和常系数线性差分方程组在给定的初始条件下的求解公式 .  相似文献   

13.
利用初等变换将常系数非齐次线性微分方程组化为由若干个相互独立的高阶常系数非齐次线性微分方程组成的方程组,再利用高阶常系数齐次线性微分方程的特征根法和非齐次方程的待定系数法求该方程组的基本解组及特解,最后通过初等变换求原方程组的基本解组及特解,从而可求出其通解.  相似文献   

14.
This paper presents a new method for validating existence and uniqueness of the solution of an initial value problems for fractional differential equations. An algorithm selecting a stepsize and computing a priori constant enclosure of the solution is proposed. Several illustrative examples, with linear and nonlinear fractional differential equations, are given to demonstrate the effectiveness of the method.  相似文献   

15.
The aim of the present paper is to obtain an integral representation of the solution of the Cauchy problem with discontinuous and continuous initial conditions for linear fractional differential system with Caputo-type derivatives and distributed delay. The obtained results are new even in the particular case of fractional system with constant delays.  相似文献   

16.
We show that the structure of the Lie symmetry algebra of a system of n linear second-order ordinary differential equations with constant coefficients depends on at most n-1 parameters. The tools used are Jordan canonical forms and appropriate scaling transformations. We put our approach to test by presenting a simple proof of the fact that the dimension of the symmetry Lie algebra of a system of two linear second-order ordinary differential with constant coefficients is either 7, 8 or 15. Also, we establish for the first time that the dimension of the symmetry Lie algebra of a system of three linear second-order ordinary differential equations with constant coefficients is 10, 12, 13 or 24.  相似文献   

17.
There exists a close link between fractional systems and infinite dimensional systems described by diffusion equations. This link can be demonstrated analytically and is reminded in this article. This fractional behaviour results in fact in the system infinite dimension along with constant geometric characteristics. This article demonstrates that several other classes of differential equations also exhibit, on a frequency band, a fractional behaviour. The fractional behaviour is obtained with these equations on a space of finite dimension but with particular geometric characteristics.  相似文献   

18.
Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. Here we construct the operational matrix of fractional derivative of order α in the Caputo sense using the linear B-spline functions. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus we can solve directly the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the new technique presented in the current paper.  相似文献   

19.
零化多项式的一个应用   总被引:1,自引:1,他引:0  
利用矩阵的零化多项式 ,给出计算标准基解矩阵 e At的一个公式 .利用向量关于矩阵的零化多项式 ,给出常系数齐次线性微分方程组初值问题的一个求解公式 .相应地 ,可以推出常系数齐次线性差分方程组在给定的初始条件下的一个求解公式 .  相似文献   

20.
This paper discussed how to solve the polynomial ordinary differential equations. At first, we construct the theory of the linear equations about the unknown one variable functions with constant coefficients. Secondly, we use this theory to convert the polynomial ordinary differential equations into the simultaneous first order linear ordinary differential equations with constant coefficients and quadratic equations. Thirdly, we work out the general solution of the polynomial ordinary differential equations which is no longer concerned with the differential. Finally, we discuss the necessary and sufficient condition of the existence of the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号