首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
In this paper, alternating projection under the constraint oflinear matrix inequalities (LMIs) is investigated to solve thefollowing two problems: finding the intersection of severalconvex LMI sets and designing an output-feedback stabilizingcontroller. Each problem is formulated as a quadratic optimizationproblem under LMI constraints. A numerical algorithm based onthe concept of alternating projection is proposed. The algorithmis demonstrated using a vertical-strip pole-assignment example.  相似文献   

2.
In this work,we present a new method for convex shape representation,which is regardless of the dimension of the concerned objects,using level-set approaches.To the best of our knowledge,the proposed prior is the first one which can work for high dimensional objects.Convexity prior is very useful for object completion in computer vision.It is a very challenging task to represent high dimensional convex objects.In this paper,we first prove that the convexity of the considered object is equivalent to the convexity of the associated signed distance function.Then,the second order condition of convex functions is used to characterize the shape convexity equivalently.We apply this new method to two applications:object segmentation with convexity prior and convex hull problem(especially with outliers).For both applications,the involved problems can be written as a general optimization problem with three constraints.An algorithm based on the alternating direction method of multipliers is presented for the optimization problem.Numerical experiments are conducted to verify the effectiveness of the proposed representation method and algorithm.  相似文献   

3.
In this paper, we propose a new algorithm for solving a bilevel equilibrium problem in a real Hilbert space. In contrast to most other projection-type algorithms, which require to solve subproblems at each iteration, the subgradient method proposed in this paper requires only to calculate, at each iteration, two subgradients of convex functions and one projection onto a convex set. Hence, our algorithm has a low computational cost. We prove a strong convergence theorem for the proposed algorithm and apply it for solving the equilibrium problem over the fixed point set of a nonexpansive mapping. Some numerical experiments and comparisons are given to illustrate our results. Also, an application to Nash–Cournot equilibrium models of a semioligopolistic market is presented.  相似文献   

4.
By using recently developed theory which extends the idea of weak convergence into CAT(0) space we prove the convergence of the alternating projection method for convex closed subsets of a CAT(0) space. Given the right notion of weak convergence it turns out that the generalization of the well-known results in Hilbert spaces is straightforward and allows the use of the method in a nonlinear setting. As an application, we use the alternating projection method to minimize convex functionals on a CAT(0) space.  相似文献   

5.
Two-phase image segmentation is a fundamental task to partition an image into foreground and background. In this paper, two types of nonconvex and nonsmooth regularization models are proposed for basic two-phase segmentation. They extend the convex regularization on the characteristic function on the image domain to the nonconvex case, which are able to better obtain piecewise constant regions with neat boundaries. By analyzing the proposed non-Lipschitz model, we combine the proximal alternating minimization framework with support shrinkage and linearization strategies to design our algorithm. This leads to two alternating strongly convex subproblems which can be easily solved. Similarly, we present an algorithm without support shrinkage operation for the nonconvex Lipschitz case. Using the Kurdyka-Łojasiewicz property of the objective function, we prove that the limit point of the generated sequence is a critical point of the original nonconvex nonsmooth problem. Numerical experiments and comparisons illustrate the effectiveness of our method in two-phase image segmentation.  相似文献   

6.
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.  相似文献   

7.
The problem of designing a controller for a linear, discretetime system is formulated as a problem of designing an appropriate plant-state covariance matrix. Closed-loop stability and multiple-output performance constraints are expressed geometrically as requirements that the covariance matrix lies in the intersection of some specified closed, convex sets in the space of symmetric matrices. We solve a covariance feasibility problem to determine the existence and compute a covariance matrix to satisty assignability and output-norm performance constraints. In addition, we can treat a covariance optimization problem to construct an assignable covariance matrix which satisfies output performance constraints and is as close as possible to a given desired covariance. We can also treat inconsistent constraints, where we look for an assignable covariance which best approximates desired but unachievable output performance objectives; we call this the infeasible covariance optimization problem. All these problems are of a convex nature, and alternating convex projection methods are proposed to solve them, exploiting the geometric formulation of the problem. To this end, analytical expressions for the projections onto the covariance assignability and the output covariance inequality constraint sets are derived. Finally, the problem of designing low-order dynamic controllers using alternating projections is discussed, and a numerical technique using alternating projections is suggested for a solution, although convergence of the algorithm is not guaranteed in this case. A control design example for a fighter aircraft model illustrates the method.This research was completed while the first author was with the Space Systems Control Laboratory at Purdue University. Support from the Army Research Office Grant ARO-29029-EG is gratefully acknowledged.  相似文献   

8.
In this paper, based on a merit function of the split feasibility problem (SFP), we present a Newton projection method for solving it and analyze the convergence properties of the method. The merit function is differentiable and convex. But its gradient is a linear composite function of the projection operator, so it is nonsmooth in general. We prove that the sequence of iterates converges globally to a solution of the SFP as long as the regularization parameter matrix in the algorithm is chosen properly. Especially, under some local assumptions which are necessary for the case where the projection operator is nonsmooth, we prove that the sequence of iterates generated by the algorithm superlinearly converges to a regular solution of the SFP. Finally, some numerical results are presented.  相似文献   

9.
In the present paper, we propose a novel convergence analysis of the alternating direction method of multipliers, based on its equivalence with the overrelaxed primal–dual hybrid gradient algorithm. We consider the smooth case, where the objective function can be decomposed into one differentiable with Lipschitz continuous gradient part and one strongly convex part. Under these hypotheses, a convergence proof with an optimal parameter choice is given for the primal–dual method, which leads to convergence results for the alternating direction method of multipliers. An accelerated variant of the latter, based on a parameter relaxation, is also proposed, which is shown to converge linearly with same asymptotic rate as the primal–dual algorithm.  相似文献   

10.
蔡文银  徐玲玲 《计算数学》2018,40(4):387-401
在文献[10]中,作者从数值角度讨论核范数和谱范数下的广义Sylvester方程约束最小二乘问题min X∈ S|NΣI=1A_iXB_i-C|的算法,其中s为闭凸集合.采用的数值算法是非精确交替方向法,并结合阈值算法、 MoreauYosida正则化算法、谱投影算法、LSQR, SPG等算法求解相应子问题.本文在文献[10]的基础上,通过引入新变量,应用交替方向法简化子问题的求解,其中每个子问题都可以精确求解,更重要的是每个变量都具有显式的表达式.在理论方面我们证明了算法的收敛性,数值试验表明改进后的算法不管是在时间上还是在迭代步上,运行的结果得到很大的改善.  相似文献   

11.
We propose a method which evaluates the solution of a matrix game. We reduce the problem of the search for the solution to a convex feasibility problem for which we present a method of projection onto an acute cone. The algorithm converges geometrically. At each iteration, we apply a combinatorial algorithm in order to evaluate the projection onto the standard simplex.  相似文献   

12.
This paper develops a new variant of the classical alternating projection method for solving convex feasibility problems where the constraints are given by the intersection of two convex cones in a Hilbert space. An extension to the feasibility problem for the intersection of two convex sets is presented as well. It is shown that one can solve such problems in a finite number of steps and an explicit upper bound for the required number of steps is obtained. As an application, we propose a new finite steps algorithm for linear programming with linear matrix inequality constraints. This solution is computed by solving a sequence of a matrix eigenvalue decompositions. Moreover, the proposed procedure takes advantage of the structure of the problem. In particular, it is well adapted for problems with several small size constraints.  相似文献   

13.
《Optimization》2012,61(9):1887-1906
The split equality problem has extraordinary utility and broad applicability in many areas of applied mathematics. Recently, Moudafi proposed an alternating CQ algorithm and its relaxed variant to solve it. However, to employ Moudafi’s algorithms, one needs to know a priori norm (or at least an estimate of the norm) of the bounded linear operators (matrices in the finite-dimensional framework). To estimate the norm of an operator is very difficult, but not an impossible task. It is the purpose of this paper to introduce a projection algorithm with a way of selecting the stepsizes such that the implementation of the algorithm does not need any priori information about the operator norms. We also practise this way of selecting stepsizes for variants of the projection algorithm, including a relaxed projection algorithm where the two closed convex sets are both level sets of convex functions, and a viscosity algorithm. Both weak and strong convergence are investigated.  相似文献   

14.
In this paper, we propose a parallel decomposition algorithm for solving a class of convex optimization problems, which is broad enough to contain ordinary convex programming problems with a strongly convex objective function. The algorithm is a variant of the trust region method applied to the Fenchel dual of the given problem. We prove global convergence of the algorithm and report some computational experience with the proposed algorithm on the Connection Machine Model CM-5.  相似文献   

15.
In this paper, we propose a memory state feedback model predictive control (MPC) law for a discrete-time uncertain state delayed system with input constraints. The model uncertainty is assumed to be polytopic, and the delay is assumed to be unknown, but with a known upper bound. We derive a sufficient condition for cost monotonicity in terms of LMI, which can be easily solved by an efficient convex optimization algorithm. A delayed state dependent quadratic function with an estimated delay index is considered for incorporating MPC problem formulation. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Therefore, a less conservative sufficient conditions in terms of linear matrix inequality (LMI) can be derived to design a more robust MPC algorithm. A numerical example is included to illustrate the effectiveness of the proposed method.  相似文献   

16.
In recent years, alternating direction method of multipliers (ADMM) and its variants are popular for the extensive use in image processing and statistical learning. A variant of ADMM: symmetric ADMM, which updates the Lagrange multiplier twice in one iteration, is always faster whenever it converges. In this paper, combined with Nesterov's accelerating strategy, an accelerated symmetric ADMM is proposed. We prove its $\mathcal{O}(\frac{1}{k^2})$ convergence rate under strongly convex condition. For the general situation, an accelerated method with a restart rule is proposed. Some preliminary numerical experiments show the efficiency of our algorithms.  相似文献   

17.
In this paper, we consider the problem of minimizing the sum of two convex functions subject to linear linking constraints. The classical alternating direction type methods usually assume that the two convex functions have relatively easy proximal mappings. However, many problems arising from statistics, image processing and other fields have the structure that while one of the two functions has an easy proximal mapping, the other function is smoothly convex but does not have an easy proximal mapping. Therefore, the classical alternating direction methods cannot be applied. To deal with the difficulty, we propose in this paper an alternating direction method based on extragradients. Under the assumption that the smooth function has a Lipschitz continuous gradient, we prove that the proposed method returns an \(\epsilon \)-optimal solution within \(O(1/\epsilon )\) iterations. We apply the proposed method to solve a new statistical model called fused logistic regression. Our numerical experiments show that the proposed method performs very well when solving the test problems. We also test the performance of the proposed method through solving the lasso problem arising from statistics and compare the result with several existing efficient solvers for this problem; the results are very encouraging.  相似文献   

18.
无限维Hilbert空间中,解凸可行问题的平行投影算法通常是弱收敛的.本文对一般的平行投影算法进行改进,设计了一种解凸可行问题的具有强收敛性的新算法.该算法主要是在原有算法基础上引入了一个参数序列,在参数序列满足一定的控制条件下保证了算法的强收敛性.为了简单证明算法的强收敛性,我们构建了一个新的积空间,然后把原空间的这种改进平行投影算法转换为积空间中的交替投影算法.这样,改进的平行投影算法的强收敛性就可以通过交替投影算法的收敛性证明得到.  相似文献   

19.
In this paper, we consider dynamic systems with uncertainties and time-varying delays. Based on the Lyapunov method and convex optimization approach, a delay-dependent criterion for exponential stability of the system is derived in terms of LMI (linear matrix inequality). In order to solve effectively the LMI convex optimization problem, an interior-point algorithm is utilized in this work. Numerical examples are illustrated to show the effectiveness of our results.  相似文献   

20.
In this paper we introduce an iterative algorithm for finding a common element of the fixed point set of an asymptotically strict pseudocontractive mapping S in the intermediate sense and the solution set of the minimization problem (MP) for a convex and continuously Frechet differentiable functional in Hilbert space. The iterative algorithm is based on several well-known methods including the extragradient method, CQ method, Mann-type iterative method and hybrid gradient projection algorithm with regularization. We obtain a strong convergence theorem for three sequences generated by our iterative algorithm. In addition, we also prove a new weak convergence theorem by a modified extragradient method with regularization for the MP and the mapping S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号