首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a decomposition algorithm for solving convex programming problems with separable structure. The algorithm is obtained through application of the alternating direction method of multipliers to the dual of the convex programming problem to be solved. In particular, the algorithm reduces to the ordinary method of multipliers when the problem is regarded as nonseparable. Under the assumption that both primal and dual problems have at least one solution and the solution set of the primal problem is bounded, global convergence of the algorithm is established.  相似文献   

2.
The alternating direction method of multipliers(ADMM)is a benchmark for solving convex programming problems with separable objective functions and linear constraints.In the literature it has been illustrated as an application of the proximal point algorithm(PPA)to the dual problem of the model under consideration.This paper shows that ADMM can also be regarded as an application of PPA to the primal model with a customized choice of the proximal parameter.This primal illustration of ADMM is thus complemental to its dual illustration in the literature.This PPA revisit on ADMM from the primal perspective also enables us to recover the generalized ADMM proposed by Eckstein and Bertsekas easily.A worst-case O(1/t)convergence rate in ergodic sense is established for a slight extension of Eckstein and Bertsekas’s generalized ADMM.  相似文献   

3.
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.  相似文献   

4.
In this paper, we incorporate importance sampling strategy into accelerated framework of stochastic alternating direction method of multipliers for solving a class of stochastic composite problems with linear equality constraint. The rates of convergence for primal residual and feasibility violation are established. Moreover, the estimation of variance of stochastic gradient is improved due to the use of important sampling. The proposed algorithm is capable of dealing with the situation, where the feasible set is unbounded. The experimental results indicate the effectiveness of the proposed method.  相似文献   

5.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

6.
We propose an alternating direction method of multiplier (ADMM) for the unilateral (frictionless) contact problem with an optimal parameter selection. We first introduce an auxiliary unknown to seprate the linear elasticity subproblem from the unilateral contact condition. Then an alternating direction is applied to the corresponding augmented Lagrangian. By eliminating the primal and auxiliary unknowns, at the discrete level, we derive a pure dual algorithm, starting point for the convergence analysis and the optimal parameter approximation. Numerical experiments are proposed to illustrate the efficiency of the proposed (optimal) penalty parameter selection method.  相似文献   

7.
针对两个可分凸函数的和在线性约束下的极小化问题,在交替方向法的框架下,提出广义的交替近似梯度算法.在一定的条件下,该算法具有全局及线性收敛性.数值实验表明该算法有好的数值表现.  相似文献   

8.
We apply the Douglas-Rachford splitting algorithm to a class of multi-valued equations consisting of the sum of two monotone mappings. Compared with the dual application of the same algorithm, which is known as the alternating direction method of multipliers, the primal application yields algorithms that seem somewhat involved. However, the resulting algorithms may be applied effectively to problems with certain special structure. In particular we show that they can be used to derive decomposition algorithms for solving the variational inequality formulation of the traffic equilibrium problem. This research was supported in part by the Scientific Research Grant-in-Aid from the Ministry of Education, Science and Culture, Japan.  相似文献   

9.
A proximal-based decomposition method for convex minimization problems   总被引:10,自引:0,他引:10  
This paper presents a decomposition method for solving convex minimization problems. At each iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers, which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm preserves the good features of the proximal method of multipliers, with the additional advantage that it leads to a decoupling of the constraints, and is thus suitable for parallel implementation. We allow for computing approximately the proximal minimization steps and we prove that under mild assumptions on the problem's data, the method is globally convergent and at a linear rate. The method is compared with alternating direction type methods and applied to the particular case of minimizing a convex function over a finite intersection of closed convex sets.Corresponding author. Partially supported by Air Force Office of Scientific Research Grant 91-0008 and National Science Foundation Grant DMS-9201297.  相似文献   

10.
In this work we analyze a first order method especially tailored for smooth saddle point problems, based on an alternating extragradient scheme. The proposed method is based on three successive projection steps, which can be computed also with respect to non Euclidean metrics. The stepsize parameter can be adaptively computed, so that the method can be considered as a black-box algorithm for general smooth saddle point problems. We develop the global convergence analysis in the framework of non Euclidean proximal distance functions, under mild local Lipschitz conditions, proving also the \(\mathcal {O}(\frac{1}{k})\) rate of convergence on the primal–dual gap. Finally, we analyze the practical behavior of the method and its effectiveness on some applications arising from different fields.  相似文献   

11.
We consider applying the Douglas–Rachford splitting method (DRSM) to the convex minimization problem with linear constraints and a separable objective function. The dual application of DRSM has been well studied in the literature, resulting in the well known alternating direction method of multipliers (ADMM). In this paper, we show that the primal application of DRSM in combination with an appropriate decomposition can yield an efficient structure-exploiting algorithm for the model under consideration, whose subproblems could be easier than those of ADMM. Both the exact and inexact versions of this customized DRSM are studied; and their numerical efficiency is demonstrated by some preliminary numerical results.  相似文献   

12.
Algorithms for convex programming, based on penalty methods, can be designed to have good primal convergence properties even without uniqueness of optimal solutions. Taking primal convergence for granted, in this paper we investigate the asymptotic behavior of an appropriate dual sequence obtained directly from primal iterates. First, under mild hypotheses, which include the standard Slater condition but neither strict complementarity nor second-order conditions, we show that this dual sequence is bounded and also, each cluster point belongs to the set of Karush–Kuhn–Tucker multipliers. Then we identify a general condition on the behavior of the generated primal objective values that ensures the full convergence of the dual sequence to a specific multiplier. This dual limit depends only on the particular penalty scheme used by the algorithm. Finally, we apply this approach to prove the first general dual convergence result of this kind for penalty-proximal algorithms in a nonlinear setting.  相似文献   

13.
黎超琼  李锋 《运筹学学报》2010,24(1):101-114
LQP交替方向法是求解可分离结构型单调变分不等式问题的一种非常有效的方法.它不仅可以充分地利用目标函数的可分结构,将原问题分解为多个更易求解的子问题,还更适合求解大规模问题.对于带有三个可分离算子的单调变分不等式问题,结合增广拉格朗日算法和LQP交替方向法提出了一种部分并行分裂LQP交替方向法,构造了新算法的两个下降方向,结合这两个下降方向得到了一个新的下降方向,沿着这个新的下降方向给出了最优步长.并在较弱的假设条件下,证明了新算法的全局收敛性.  相似文献   

14.
《Optimization》2012,61(11):1963-2001
ABSTRACT

This paper introduces the Fejér-monotone hybrid steepest descent method (FM-HSDM), a new member to the HSDM family of algorithms, for solving affinely constrained minimization tasks in real Hilbert spaces, where convex smooth and non-smooth losses compose the objective function. FM-HSDM offers sequences of estimates which converge weakly and, under certain hypotheses, strongly to solutions of the task at hand. In contrast to its HSDM's precursors, FM-HSDM enjoys Fejér monotonicity, the step-size parameter stays constant across iterations to promote convergence speed-ups of the sequence of estimates to a minimizer, while only Lipschitzian continuity, and not strong monotonicity, of the derivative of the smooth-loss function is needed to ensure convergence. FM-HSDM utilizes fixed-point theory, variational inequalities and affine-nonexpansive mappings to accommodate affine constraints in a more versatile way than state-of-the-art primal–dual techniques and the alternating direction method of multipliers do. Recursions can be tuned to score low computational footprints, well-suited for large-scale optimization tasks, without compromising convergence guarantees. Results on the rate of convergence to an optimal point are also presented. Finally, numerical tests on synthetic data are used to validate the theoretical findings.  相似文献   

15.
Assuming that the primal part of the sequence generated by a Newton-type (e.g., SQP) method applied to an equality-constrained problem converges to a solution where the constraints are degenerate, we investigate whether the dual part of the sequence is attracted by those Lagrange multipliers which satisfy second-order sufficient condition (SOSC) for optimality, or by those multipliers which violate it. This question is relevant at least for two reasons: one is speed of convergence of standard methods; the other is applicability of some recently proposed approaches for handling degenerate constraints. We show that for the class of damped Newton methods, convergence of the dual sequence to multipliers satisfying SOSC is unlikely to occur. We support our findings by numerical experiments. We also suggest a simple auxiliary procedure for computing multiplier estimates, which does not have this undesirable property. Finally, some consequences for the case of mixed equality and inequality constraints are discussed.  相似文献   

16.
We propose an alternating direction method of multipliers (ADMM) for solving the state constrained optimization problems governed by elliptic equations. The unconstrained as well as box-constrained cases of the Dirichlet boundary control, Robin boundary control, and right-hand side control problems are considered here. These continuous optimization problems are transformed into discrete optimization problems by the finite element method discretization, then are solved by ADMM. The ADMM is an efficient first order algorithm with global convergence, which combines the decomposability of dual ascent with the superior convergence properties of the method of multipliers. We shall present exhaustive convergence analysis of ADMM for these different type optimization problems. The numerical experiments are performed to verify the efficiency of the method.  相似文献   

17.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

18.
The minimax concave penalty (MCP) has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selection and parameter estimation. In this paper, we develop an efficient alternating direction method of multipliers (ADMM) with continuation algorithm for solving the MCP-penalized least squares problem in high dimensions. Under some mild conditions, we study the convergence properties and the Karush–Kuhn–Tucker (KKT) optimality conditions of the proposed method. A high-dimensional BIC is developed to select the optimal tuning parameters. Simulations and a real data example are presented to illustrate the efficiency and accuracy of the proposed method.  相似文献   

19.
A Modified Barrier-Augmented Lagrangian Method for Constrained Minimization   总被引:4,自引:0,他引:4  
We present and analyze an interior-exterior augmented Lagrangian method for solving constrained optimization problems with both inequality and equality constraints. This method, the modified barrier—augmented Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods. It is based on the MBAL function, which treats inequality constraints with a modified barrier term and equalities with an augmented Lagrangian term. The MBAL method alternatively minimizes the MBAL function in the primal space and updates the Lagrange multipliers. For a large enough fixed barrier-penalty parameter the MBAL method is shown to converge Q-linearly under the standard second-order optimality conditions. Q-superlinear convergence can be achieved by increasing the barrier-penalty parameter after each Lagrange multiplier update. We consider a dual problem that is based on the MBAL function. We prove a basic duality theorem for it and show that it has several important properties that fail to hold for the dual based on the classical Lagrangian.  相似文献   

20.
《Optimization》2012,61(3):353-374
In the present paper some barrier and penalty methods (e.g. logarithmic barriers, SUMT, exponential penalties), which define a continuously differentiable primal and dual path, applied to linearly constrained convex problems are studied, in particular, the radius of convergence of Newton’s method depending on the barrier and penalty para-meter is estimated, Unlike using self-concordance properties the convergence bounds are derived by direct estimations of the solutions of the Newton equations. The obtained results establish parameter selection rules which guarantee the overall convergence of the considered barrier and penalty techniques with only a finite number of Newton steps at each parameter level. Moreover, the obtained estimates support scaling method which uses approximate dual multipliers as available in barrier and penalty methods  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号