首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
钟吉玉  李晓培 《数学杂志》2014,34(6):1059-1072
本文研究了小展弦比波的Green-Naghdi渐进模型. 利用平面自治系统的稳定性分析方法, 在不同的参数条件下, 讨论了它的行波系统的分岔并且给出了对应的相图, 得到了光滑周期波解, 广义扭波解, 广义反扭波解, 广义紧波解, 周期尖波解, 孤波解和孤立尖波解的精确表达式. 进一步, 通过数学软件Maple模拟了这些解.  相似文献   

2.
本文研究了小展弦比波的Green-Naghdi渐进模型.利用平面自治系统的稳定性分析方法,在不同的参数条件下,讨论了它的行波系统的分岔并且给出了对应的相图,得到了光滑周期波解,广义扭波解,广义反扭波解,广义紧波解,周期尖波解,孤波解和孤立尖波解的精确表达式.进一步,通过数学软件Maple模拟了这些解.  相似文献   

3.
通过使用符号计算系统Mathematica,并借助于推广的F-展开法,我们得到了Klein- Gordon-Zakharov方程组的用不同Jacobi椭圆函数表示的一系列周期波解.在极限情况下,还求出了对应的孤立波解.  相似文献   

4.
非线性波方程的精确孤立波解   总被引:93,自引:0,他引:93       下载免费PDF全文
立了一种求解非线性波方程精确孤立波解的双曲函数方法,并在计算机代数系统上加以实现,推导出了一大批非线性波方程的精确孤立波解.方法的基本原理是利用非线性波方程孤立波解的局部性特点,将方程的孤立波解表示为双曲函数的多项式,从而将非线性波方程的求解问题转化为非线性代数方程组的求解问题.利用吴消元法或Gröbner基方法在计算机代数系统上求解非线性代数方程组, 最终获得非线性波方程的精确孤立波解,其中有很多新的精确孤立波解.  相似文献   

5.
给出了包含宏观应变和微形变的全部二次项以及宏观应变三次项的一种新的自由能函数.利用新自由能函数并根据Mindlin微结构理论,建立了描述微结构固体中纵波传播的一种新模型.利用近来发展的奇行波系统的动力系统理论,分析了系统的所有相图分支,并给出了周期波解、孤立波解、准孤立尖波解、孤立尖波解以及紧孤立波解.孤立尖波解和紧孤立波解的得到,有效地证明了在一定条件下,微结构固体中可以形成和存在孤立尖波和紧孤立波等非光滑孤立波.此结果进一步推广了微结构固体中只存在光滑孤立波的已有结论.  相似文献   

6.
周显初  崔洪农 《中国科学A辑》1992,35(12):1269-1276
本文在研究非传播弧立波时仔细考虑了表面张力的影响,把表面张力和液体深度的参数平面划分为三个区域,发现其中两个区可产生呼吸弧立波。到目前为止,所有理论和实验文章中提到的呼吸弧立波的参数都在一个参数区内,我们首先报道了另一个参数区并被我们的实验证实.在第三个参数区中,理论分析得到的解是纽结孤立波,但是在我们的实验中除了得到纽结孤立波之外,过得到了一种类似于呼吸孤立波的非传播孤立波.  相似文献   

7.
利用平面动力系统分支方法研究浅水中度振幅方程的定性行为和孤立波解.给出了系统在不同参数条件下的相图.获得了光滑孤立波、cuspon解和周期波解的隐式表达式.对方程的光滑孤立波解、cuspon解和周期波解进行了数值模拟.获得的结果完善了相关文献已有的结果.  相似文献   

8.
应用F展开法求KdV方程的周期波解   总被引:8,自引:0,他引:8  
提出了求非线性数学物理演化方程周期波解的F展开法,该方法可看作最近提出的扩展的Jacobi椭圆函数展开方法的浓缩.直接利用F展开法而不计算Jacobi椭圆函数,我们可同时得到著名的KdV方程的多个用Jacobi椭圆函数表示的周期波解.当模数m→1 时,可得到双曲函数解(包括孤立波解).  相似文献   

9.
讨论激光等离子体产生的波模型,形成了具有初值间断的Burgers方程Riemann问题,通过奇摄动展开的方法得到了具有间断初值的Burgers方程相应形式的奇摄动渐近解,渐近解包含外解和内部层矫正两部分.由于初值条件是常数,波在传播的过程中产生特征边界,矫正项为抛物边界即抛物型特征边界.对外解在特征边界上进行内部层矫正,利用Hopf-Cole变换、Fourier变换、极值原理证明了渐近解的存在性、唯一性,得到了形式渐近展开式.证明了形式渐近解的一致有效性.  相似文献   

10.
缓变深度分层流体中的准周期波和准孤立波   总被引:1,自引:1,他引:0  
本文讨论具缓变深度二流体系统中的非线性波,该系统由一不规则底部与一水平固壁间的两层常密度无粘流体所组成.文中用约化摄动法导出了所考虑模型的变系数Korteweg-de Vries方程,并用多重尺度法求出了该方程的近似解,发现底部固壁的不规则变化将产生所谓准周期波和准孤立波.它们的周期、波速和波形将发生缓慢变化,文中给出了准周期波的周期随深度的变化关系式以及准孤立波波幅、波速随深度的变化关系式,底部水平情形和单层流体情形可看成是本文的特例.  相似文献   

11.
Degasperis-Procesi方程的孤立尖波解   总被引:1,自引:0,他引:1  
利用动力系统的定性分析理论对D egasperis-P rocesi方程的孤立尖波解进行了研究.给出了D e-gasperis-P rocesi方程对应行波系统的相图分支,利用相图获得了孤立尖波解和周期尖波解的解析表达式,通过数值模拟给出了部分解的图像.  相似文献   

12.
本文研究—类变式Boussinesq系统ηt+((1+αη)w)x-β/6wxxx=0, wt+αwwx+ηx-β/2wxxt=0,其中α和β都是正常数.许多逼近模型都能从此系统中被推导出,比如Boussinesq系统和两分量Camassa-Holm系统等.本文利用平面动力系统方法研究它的行波解及相图,得到了孤立波解,广义扭波解,广义反扭波解,紧孤立波解和周期波解,并给出了这些解的数值模拟.  相似文献   

13.
非线性波方程准确孤立波解的符号计算   总被引:75,自引:0,他引:75  
该文将机械化数学方法应用于偏微分方程领域,建立了构造一类非线性发展方程孤立波解的一种统一算法,并在计算机数学系统上加以实现,推导出了一批非线性发展方程的精确孤立波解.算法的基本原理是利用非线性发展方程孤立波解的局部性特点,将孤立波表示为双曲正切函数的多项式.从而将非线性发展方程(组)的求解问题转化为非线性代数方程组的求解问题.利用吴文俊消元法在计算机代数系统上求解非线性代数方程组,最终获得非线性发展方程(组)的准确孤立波解.  相似文献   

14.
周兰锁  尹晓军 《应用数学》2019,32(2):376-381
近年来,关于3阶KdV方程的孤立波解得到迅速发展,而对于5阶KdV方程的孤立波解文献报道较少.本文主要采用Sine-Cosine展开法得到了一类5阶KdV方程的孤立波解;然后利用Matlab计算软件,获得了孤立波解的图形,其结果展示了孤立子与系数之间的相互关系;最后,应用所得的结果分别得到了Lax方程, SK方程, CDG方程的孤立波解.  相似文献   

15.
Zhiber-Shabat方程的孤立波解与周期波解   总被引:1,自引:1,他引:0  
结合齐次平衡法原理并利用F展开法,再次研究了Zhiber-Shabat方程的各种椭圆函数周期解.当椭圆函数的模m分别趋于1或0时,利用这些椭圆函数周期解,得到了Zhiber-Shabat方程的各种孤子解和三角函数周期解,从而丰富了相关文献中关于Zhiber-Shabat波方程的解的类型.  相似文献   

16.
采用了一种新的方法来求解浅水波方程和Klein-Gordon的行波解.在该方法下,Klein-Gordon方程和浅水波方程都得到了其精确的周期孤立波解,从而该方法的有效性得到了验证.  相似文献   

17.
运用平面动力系统理论和方法给出了广义Camassa-Holm方程在各种参数条件下的相图与分支,分析了奇线对其行波解的影响,获得了广义Camassa-Holm方程光滑、非光滑孤立波解和周期波解的存在性及个数,求出了它的两组新周期尖波解的显式表达式.  相似文献   

18.
利用动力系统方法,针对广义带导数的非线性Schrdinger方程的精确解问题进行研究分析.采用行波变换,将其化为常微分方程动力系统;计算出该方程动力系统的首次积分,讨论了系统在不同参数条件下的奇点与相图,得到对应的精确解,包括孤立波解、周期波解、扭结波解和反扭结波解.运用数值模拟的方法,对方程的光滑孤立波解和周期波解等进行了数值模拟.分析计算获得的结果完善了相关文献已有的研究成果.  相似文献   

19.
通过分数阶复杂变换将(2+1)维时空分数阶Nizhnik-Novikov-Veslov方程组转化为一个常微分方程;再利用动力系统分支方法得到系统的Hamilton量和分支相图;并根据相图轨道构建出该方程的孤立波解、爆破波解、周期波解、周期爆破波解;最后讨论了这些解之间的联系.  相似文献   

20.
本文讨论了静力平衡下的绝热自由大气非线性重力惯性波的孤立渡解存在性,设运动在y方向是均匀的,又采用了β平面近似,同时忽略了动量方程中垂直平流项,我们导出了孤立波解的解析解表达式,通过对波速c的讨论,我们指出:在中纬地区,很难形成孤立波;在低纬地区(热带地区),由于科氏力很小,层结稳定度较弱有可能产生孤立波。最后我们讨论了孤立波的波速c与科氏力f,β和稳定参数σ_8之间关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号