首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
早在20世纪50年代,Zarankiewicz 猜想完全2-部图K_{m,n}(m\leq n)的交叉数为\lfloor\frac{m}{2}\rfloor\times \lfloor\frac{m-1}{2}\rfloor\times\lfloor\frac{n}{2}\rfloor\times\lfloor\frac{n-1}{2}\rfloor (对任意实数x,\lfloor x\rfloor表示不超过x的最大整数). 目前这一猜想的正确性只证明了当m\leq6时成立. 假定著名的Zarankiewicz的猜想对m=7的情形成立,确定了6-轮W_{6}与星S_{n}的笛卡尔积图的交叉是 cr(W_{6}\times S_{n})=9\lfloor\frac{n}{2}\rfloor\times\lfloor\frac{n-1}{2}\rfloor+2n+5\lfloor\frac{n}{2}\rfloor.  相似文献   

2.
把完全图$K_{5}$的五个顶点与另外$n$个顶点都联边得到一类特殊的图$H_{n}$.文中证明了$H_{n}$的交叉数为$Z(5,n)+2n+\lfloor \frac{n}{2}\rfloor+1$,并在此基础上证明了$K_{5}$与星$K_{1,n}$的笛卡尔积的交叉数为$Z(5,n)+5n+\lfloor\frac{n}{2} \rfloor+1$.  相似文献   

3.
The well known Zarankiewicz' conjecture is said that the crossing number of the complete bipartite graph Km,n (m≤ n) is Z(m,n), where Z(m,n)=\lfloor\frac{m}{2}\rfloor\lfloor\frac{m-1}{2}\rfloor\lfloor\frac{n}{2}\rfloor$\lfloor\frac{n-1}{2}\rfloor$ (for any real number x, $\lfloor x\rfloor$ denotes the maximal integer no more than x). Presently, Zarankiewicz' conjecture is proved true only for the case m≤ 6. In this article, the authors prove that if Zarankiewicz' conjecture holds for m≤9, then the crossing number of the complete tripartite graph K1,8,n is $Z(9, n)+ 12\lfloor\frac{n}{2}\rfloor$.  相似文献   

4.
给定图$G$,对图$G$的每条边确定一个方向,称为$G$的定向图$G^\sigma$, $G$称为$G^\sigma$的基础图. $G^\sigma$的斜邻接矩阵$S(G^\sigma)$是反对称矩阵,其特征值是0或纯虚数. $S(G^\sigma)$所有特征值的$k$次幂之和称为$G^\sigma$的$k$阶斜谱矩,其中$k$是非负整数.斜谱矩序列可用于对图进行排序.本文主要研究定向树和定向单圈图的斜谱矩,并对这两类图的斜谱矩序列依照字典序进行排序.首先确定了直径为$d$的树作为基础图的所有定向树中,斜谱矩序最大的$2\lfloor\frac{d}{4}\rfloor$个图; 然后确定以围长为$g$的单圈图作为基础图的所有定向单圈图中, 斜谱矩序最大的$2\lfloor\frac{g}{4}\rfloor+1$个图.  相似文献   

5.
最近Ando等证明了在一个$k$($k\geq 5$ 是一个整数) 连通图 $G$ 中,如果 $\delta(G)\geq k+1$, 并且 $G$ 中既不含 $K^{-}_{5}$,也不含 $5K_{1}+P_{3}$, 则$G$ 中含有一条 $k$ 可收缩边.对此进行了推广,证明了在一个$k$连通图$G$中,如果 $\delta(G)\geq k+1$,并且 $G$ 中既不含$K_{2}+(\lfloor\frac{k-1}{2}\rfloor K_{1}\cup P_{3})$,也不含 $tK_{1}+P_{3}$ ($k,t$都是整数,且$t\geq 3$),则当 $k\geq 4t-7$ 时, $G$ 中含有一条 $k$ 可收缩边.  相似文献   

6.
该文证明带有粗糙核的分数次积分算子的多线性算子\[T_{\Omega,\alpha}^{A}(f)(x)={\rm {\rm p.v.}}\int_{R^{n}}P_{m}(A;x,y)\frac{\Omega(x-y)}{|x-y|^{n-\alpha+m-1}}f(y){\rm d}y\]的$(H^{1}(\rr^{n}),L^{\frac{n}{n-\alpha},\infty}(\rr^{n}))$有界性.  相似文献   

7.
The Catalan numbers $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,\ldots$ are given by $C(n)=\frac{1}{n+1}\binom{2n}{n}$ for $n\geq 0$. They are named for Eugene Catalan who studied them as early as 1838. They were also found by Leonhard Euler (1758), Nicholas von Fuss (1795), and Andreas von Segner (1758). The Catalan numbers have the binomial generating function $$\mathbf{C}(z) = \sum_{n=0}^{\infty}C(n)z^n = \frac{1 - \sqrt{1-4z}}{2z}$$ It is known that powers of the generating function $\mathbf{C}(z)$ are given by $$\mathbf{C}^a(z) = \sum_{n=0}^{\infty}\frac{a}{a+2n}\binom{a+2n}{n}z^n.$$ The above formula is not as widely known as it should be. We observe that it is an immediate, simple consequence of expansions first studied by J. L. Lagrange. Such series were used later by Heinrich August Rothe in 1793 to find remarkable generalizations of the Vandermonde convolution. For the equation $x^3 - 3x + 1 =0$, the numbers $\frac{1}{2k+1}\binom{3k}{k}$ analogous to Catalan numbers occur of course. Here we discuss the history of these expansions. and formulas due to L. C. Hsu and the author.  相似文献   

8.
\small\zihao{-5}\begin{quote}{\heiti 摘要:} 设$M$为$n+1$维单位球面$S^{n+1}(1)$中的一个极小闭超曲面,如果 $ n \le S \le n+\frac{2}{3}$, 则有 $S=n$ 且 $M$ 与某一Clifford 环面 $S^m(\sqrt{m/n}) \times S^{n-m}(\sqrt{(n-m)/n})$等距.  相似文献   

9.
设$V=\{ a_{1},a_{2},\ldots ,a_{n}\}$是$n\geq 2$的一个有限集合,$V$上所有本原的二元关系组成的集合记为$P_{n}(V)$.对任意的$Q\in P_{n}(V)$,与$Q$对应的有向图记为$G(Q)$.记$ P_{n}(V,d)=\{Q:Q\in P_{n}(V)$ 且$G(Q)$ 恰好包含 $d$ 个环\},其中$0相似文献   

10.
设$W_{\beta}(x)=\exp(-\frac{1}{2}|x|^{\beta})~(\beta > 7/6)$ 为Freud权, Freud正交多项式定义为满足下式$\int_{- \infty}^{\infty}p_{n}(x)p_{m}(x)W_{\beta}^{2}(x)\rd x=\left \{ \begin{array}{ll} 0 & \hspace{3mm} n \neq m , \\ 1 & \hspace{3mm}n = m \end{array} \right.$的  相似文献   

11.
刘名生  朱玉灿 《中国科学A辑》2007,37(10):1193-1206
在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在C~n中的有界完全Reinhardt域Ω上推广的Roper-Suffridge算子Φ(f)定义为Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)(z)=(rf(z_1/r),((rf(z_1/r))/z_1)~(β_2)(f′(z_1/r))~γ_2_(z_2,…,)((rf(z_1/r))/z_1)~(β_n)(f′(z_1/r))~(γ_n)_(z_n),其中n≥2,(z_1,z_2,…,z_n)∈Ω,r=r(Ω)=sup{|z_1|:(z_1,z_2,…,z_n)∈Ω},0≤γ_j≤1-β_j,0≤β_j≤1,这里选取幂函数的单值解析分支,使得((f(z_1))/z_1)~(β_j)|_(z_1=0)=1和(f′(z_1))~(γ_j)|_(z_1=0)=1,j= 2,…,n.证明了Ω上的算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)是将S_α~*(U)的子集映入S_α~*(Ω)(0≤α<1),且对于一些合适的常数β_j,γ_j,p_j,D_p上的这个算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)保持α阶星形性或保持β型螺形性,其中(?) U是复平面C上的单位圆,S_α~*(Ω)是Ω上所有正规化α阶星形映射所成的类.也得到:对于某些合适的常数β_j,γ_j,p_j和0≤α<1,Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)∈S_α~*(D_p)当且仅当f∈S_α~*(U).  相似文献   

12.
该文的主要结果是: 对任意Zygmund类$C^{p,Z}$映射$f:R^{n}\rightarrow R^{m}$, 若$\frac{n-m}{2}\leq p\leq n-m-1$, 则有mes$K_{f}>0$或者mes$C_{f}>0$. 这个结果给出了Hirsch问题的部分回答.  相似文献   

13.
设H=(V,E)是以V为顶点集, E为(超)边集的超图. 如果H的每条边均含有k个顶点, 则称H是k-一致超图. 超图H的点子集T称为它的一个横贯, 如果T 与H 的每条边均相交. 超图H的全横贯是指它的一个横贯T, 并且T还满足如下性质: T中每个顶点均至少有一个邻点在T中. H 的全横贯数定义为H 的最小全横贯所含顶点的数目, 记作\tau_{t}(H). 对于整数k\geq 2, 令b_{k}=\sup_{H\in{\mathscr{H}}_{k}}\frac{\tau_{t}(H)}{n_{H}+m_{H}}, 其中n_H=|V|, m_H=|E|, {\mathscr{H}}_{k} 表示无孤立点和孤立边以及多重边的k-一致超图类. 最近, Bujt\'as和Henning等证明了如下结果: b_{2}=\frac{2}{5}, b_{3}=\frac{1}{3}, b_{4}=\frac{2}{7}; 当k\geq 5 时, 有b_{k}\leq \frac{2}{7}以及b_{6}\leq \frac{1}{4}; 当k\geq 7 时, b_{k}\leq \frac{2}{9}. 证明了对5-一致超图, b_{5}\leq \frac{4}{15}, 从而改进了当k=5 时b_k的上界.  相似文献   

14.
设$\Lambda=\{\lambda_{n}\}_{n=1}^{\infty}$为正的实数数列, 且当$n\rightarrow\infty$时, 有$\lambda_{n}\searrow 0$.本文给出了当 $\lambda_{n}\leq Mn^{-\frac{1}{2}},\;n=1,2, \cdots ,$(其中$M>0$为一正常数)时M\"{u}ntz系统$\{x^{\lambda_n}\}$的有理函数在$ L_{[0,1]} ^{p}$空间的逼近速度,主要结论为$R_{n} (f, \Lambda )_{L^{p}}\leq C_M \omega (f, n^{-\frac{1}{2}})_{L^{p}},\;1 \leq p \leq \infty.$  相似文献   

15.
边数等于点数加二的连通图称为三圈图.~设 ~$\Delta(G)$~和~$\mu(G)$~
分别表示图~$G$~的最大度和其拉普拉斯谱半径,设${\mathcal
T}(n)$~表示所有~$n$~阶三圈图的集合,证明了对于~${\mathcal
T}(n)$~的两个图~$H_{1}$~和~$H_{2}$~,~若~$\Delta(H_{1})>
\Delta(H_{2})$ ~且 ~$\Delta(H_{1})\geq \frac{n+7}{2}$,~则~$\mu
(H_{1})> \mu (H_{2}).$ 作为该结论的应用,~确定了~${\mathcal
T}(n)(n\geq9)$~中图的第七大至第十九大的拉普拉斯谱半径及其相应的极图.  相似文献   

16.
关注如下的对流扩散方程 $$ u_{t}=\text{div}(|\nabla u^{m}|^{p-2}\nabla u^{m})+\sum_{i=1}^{N}\frac{\partial b_{i}(u^{m})}{\partial x_{i}} $$ 的初边值问题. 若 $p>1+\frac{1}{m}$, 通过考虑正则化问题的解 $u_{k}$, 利用 Moser 迭代技巧, 得到了$u_{k}$ 的 $L^{\infty}$ 模与 梯度 $\nabla u_{k}$ 的 $L^{p}$ 模的局部有界性. 利用紧致性定理, 得到了对流扩散方程本身解的存在性. 若 $p<1+\frac{1}{m},\ p>2$ 或者 $p=1+\frac{1}{m}$, 利用类似的方法可以得到解的存在性. 证明了解的唯一性, 同时讨论了正性和熄灭性等解的性质.  相似文献   

17.
本文在无边界流的光滑有界区域$\Omega\subset\mathbb{R}^n~(n>2)$上研究了具有奇异灵敏度及logistic源的抛物-椭圆趋化系统$$\left\{\begin{array}{ll}u_t=\Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+r u-\mu u^k,&x\in\Omega,\,t>0,\\ 0=\Delta v-v+u,&x\in\Omega,\,t>0\end{array}\right.$$ 其中$\chi$, $r$, $\mu>0$, $k\geq2$. 证明了若当$r$适当大, 则当$t\rightarrow\infty$时该趋化系统全局有界解呈指数收敛于$((\frac{r}{\mu})^{\frac{1}{k-1}}, (\frac{r}{\mu})^{\frac{1}{k-1}})$.  相似文献   

18.
杨忠强  吴拿达 《中国科学A辑》2008,38(10):1168-1182
设$(X,\rho)$是一个度量空间. 用$\dd {\rm USCC}(X)$和$\dd {\rm CC}(X)$ 分别表示从$X$ 到 $\I=[0,1]$的紧支撑的上半连续函数和紧支撑的连续函数下方图形全体. 赋予 Hausdorff 度量后, 它们是拓扑空间. 文中证明了, 如果 $X$ 是一个无限的且孤立点集稠密的紧度量空间, 则 $(\dd {\rm USCC}(X),\dd {\rm CC}(X))\approx(Q,c_0\cup (Q\setminus \Sigma))$, 即存在一个同胚 $h:~\dd {\rm USCC}(X)\to Q$, 使得 $h(\dd {\rm CC}(X))=c_0\cup (Q\setminus \Sigma)$, 这里 $Q=[-1,1]^{\omega},\,\Sigma=\{(x_n)_{n}\in Q: {\rm sup}|x_n|<1\},\, c_0=\Big\{(x_n)_{n}\in \Sigma: \lim\limits_{n\to +\infty}x_n=0\Big\}.$ 结合这个论断和另一篇文章的结果, 可以得到: 如果 $X$ 是一个无限的紧度量空间, 则 $(\uscc(X), \cc(X))\approx \left\{ \begin{array}{ll} (Q,c_0\cup (Q\setminus \Sigma)), &;\quad \text{如 果 孤 立 点 集 在} X \text{中稠密},\\ (Q, c_0), &;\quad \text{ 其他}. \end{array} \right.$ 还证明了, 对一个度量空间$X$, $(\dd {\rm USCC}(X),\dd {\rm CC}(X))\approx (\Sigma,c_0)$ 当且仅当 $X$是一个非紧的、局部紧的、非离散的可分空间.  相似文献   

19.
本文证明了自正则化Davis大数律和重对数律的精确渐近性, 即 {\heiti\bf 定理1}\hy 设$\ep X=0$, 且$\ep X^2I_{(|X|\leq x)}$在无穷远处是缓变函数, 则$\lim_{\varepsilon\searrow0}\varepsilon^2\tsm_{n\geq3}\frac{1}{n\log n}\pr\Big(\Big|\frac{S_n}{V_n}\Big|\geq\varepsilon\sqrt{\log\log n}\Big)=1.${\heiti\bf 定理2}\hy 设$\ep X=0$, 且$\ep X^2I_{(|X|\leq x)}$在无穷远处是缓变函数, 则对本文证明了目正则化Davis大数律和重对数律的精确渐近性,即定理1设EX=0,且EX~2I_(|x|≤x)在无穷远处是缓变函数,则■定理2设EX=0,且EX~2I_(|x|≤x)在无穷远处是缓变函数,则对0≤δ≤1,有■其中N为标准正态随机变量.  相似文献   

20.
姜伟  姜翠波 《中国科学A辑》2008,38(7):761-780
对于任意一个顶点算子超代数$V$及$m,n\in
\frac{1}{2}\mathbb{Z}_{+}$, 通过构造$A_n(V)-A_m(V)$-\!双模
$A_{n,m}(V)$, 刻画了$V$
的一个从可容许$V$-\!模的第$m+1$层子空间到第$n+1$层子空间的作用,
并得到一类Verma型可容许$V$-\!模.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号