首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
In this paper, a heroin epidemic model on complex networks is proposed. By the next generation matrix, the basic reproduction number $R_0$ is obtained. If $R_0<1$, then the drug-free equilibrium is globally asymptotically stable. If $R_0>1$, there is an unique endemic equilibrium and it is also globally asymptotically stable. Our results show that if the degree of the network is large enough, the drug transmission always spreads. Sensitivity analysis of the basic reproduction number with the various parameters in the model are carried out to verify the important effects for control the drug transmission. Some simulations illustrate our theoretical results  相似文献   

2.
该文研究一类具有种群Logistic增长及饱和传染率的SIS传染病模型,讨论了平衡点的存在性及全局渐近稳定性,得到疾病消除的阈值就是基本再生数$R_{0}=1$. 证明了,当$R_{0}<1$ 时,无病平衡点全局渐近稳定;当$R_{0}>1$ 且$\alpha K\leq 1$ 时,正平衡点全局渐近稳定;当$R_{0}>1$ 且$\Delta ={0}$ 时,系统在正平衡点附近发生Hopf分支;当$R_{0}>1$ 且$\Delta <{0}$ 时,系统在正平衡点外围附近存在唯一稳定的极限环.  相似文献   

3.
In this paper, we study a viral infection model with an immunity time delay accounting for the time between the immune system touching antigenic stimulation and generating CTLs. By calculation, we derive two thresholds to determine the global dynamics of the model, i.e., the reproduction number for viral infection $R_{0}$ and for CTL immune response $R_{1}$. By analyzing the characteristic equation, the local stability of each feasible equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the CTL-activated infection equilibrium is also studied. By constructing suitable Lyapunov functionals, we prove that when $R_{0}\leq1$, the infection-free equilibrium is globally asymptotically stable; when $R_{0}>1$ and $R_{1}\leq1$, the CTL-inactivated infection equilibrium is globally asymptotically stable; Numerical simulation is carried out to illustrate the main results in the end.  相似文献   

4.
The transmission mechanism of some animal diseases is complex because of the multiple transmission pathways and multiple-group interactions, which lead to the limited understanding of the dynamics of these diseases transmission. In this paper, a delay multi-group dynamic model is proposed in which time delay is caused by the latency of infection. Under the biologically motivated assumptions, the basic reproduction number $R_0$ is derived and then the global stability of the disease-free equilibrium and the endemic equilibrium is analyzed by Lyapunov functionals and a graph-theoretic approach as for time delay. The results show the global properties of equilibria only depend on the basic reproductive number $R_0$: the disease-free equilibrium is globally asymptotically stable if $R_0\leq 1$; if $R_0>1$, the endemic equilibrium exists and is globally asymptotically stable, which implies time delay span has no effect on the stability of equilibria. Finally, some specific examples are taken to illustrate the utilization of the results and then numerical simulations are used for further discussion. The numerical results show time delay model may experience periodic oscillation behaviors, implying that the spread of animal diseases depends largely on the prevention and control strategies of all sub-populations.  相似文献   

5.
In this paper, we investigate a class of multi-group epidemic models with general exposed distribution and nonlinear incidence rate. Under biologically motivated assumptions, we show that the global dynamics are completely determined by the basic production number $R_0$. The disease-free equilibrium is globally asymptotically stable if $R_0\leq1$, and there exists a unique endemic equilibrium which is globally asymptotically stable if $R_0>1$. The proofs of the main results exploit the persistence theory in dynamical system and a graph-theoretical approach to the method of Lyapunov functionals. A simpler case that assumes an identical natural death rate for all groups and a gamma distribution for exposed distribution is also considered. In addition, two numerical examples are showed to illustrate the results.  相似文献   

6.
This paper mainly investigates the global asymptotic stabilities of two HIV dynamics models with two distributed intracellular delays incorporating Beddington-DeAngelis functional response infection rate. An eclipse stage of infected cells (i.e. latently infected cells), not yet producing virus, is included in our models. For the first model, it is proven that if the basic reproduction number $R_0$ is less than unity, then the infection-free equilibrium is globally asymptotically stable, and if $R_0 $ is greater than unity, then the infected equilibrium is globally asymptotically stable. We also obtain that the disease is always present when $R_0 $ is greater than unity by using a permanence theorem for infinite dimensional systems. What is more, a n-stage-structured HIV model with two distributed intracellular delays, which is the extensions to the first model, is developed and analyzed. We also prove the global asymptotical stabilities of two equilibria by constructing suitable Lyapunov functionals.  相似文献   

7.
Spatial heterogeneity plays an important role in the distribution and persistence of many infectious disease. In the paper, a multi-patch model for the spread of West Nile virus among $n$ discrete geographic regions is presented that incorporates a mobility process. In the mobility process, we assume that the birds can move among regions, but not the mosquitoes based on scale-space. We show that the movement of birds between patches is sufficient to maintain disease persistence in patches. We compute the basic reproduction number $R_{0}$. We prove that if $R_{0}<1$, then the disease-free equilibrium of the model is globally asymptotically stable. When $R_{0}>1$, we prove that there exists a unique endemic equilibrium, which is globally asymptotically stable on the biological domain. Finally, numerical simulations demonstrate that the disease becomes endemic in both patches when birds move back and forth between two regions.  相似文献   

8.
In this paper, we present the deterministic and stochastic delayed SIQS epidemic models. For the deterministic model, the basic reproductive number $R_{0}$ is given. Moreover, when $R_{0}<1$, the disease-free equilibrium is globally asymptotical stable. When $R_{0}>1$ and additional conditions hold, the endemic equilibrium is globally asymptotical stable. For the stochastic model, a sharp threshold $\overset{\wedge }{R}_{0}$ which determines the extinction or persistence in the mean of the disease is presented. Sufficient conditions for extinction and persistence in the mean of the epidemic are established. Numerical simulations are also conducted in the analytic results.  相似文献   

9.
Recent investigation indicated that latent reservoir and immune impairment are responsible for the post-treatment control of HIV infection. In this paper, we simplify the disease model with latent reservoir and immune impairment and perform a series of mathematical analysis. We obtain the basic infection reproductive number $R_{0}$ to characterize the viral dynamics. We prove that when $R_{0}<1$, the uninfected equilibrium of the proposed model is globally asymptotically stable. When $R_{0}>1$, we obtain two thresholds, the post-treatment immune control threshold and the elite control threshold. The model has bistable behaviors in the interval between the two thresholds. If the proliferation rate of CTLs is less than the post-treatment immune control threshold, the model does not have positive equilibria. In this case, the immune free equilibrium is stable and the system will have virus rebound. On the other hand, when the proliferation rate of CTLs is greater than the elite control threshold, the system has stable positive immune equilibrium and unstable immune free equilibrium. Thus, the system is under elite control.  相似文献   

10.
研究一类种群有迁移的流行病模型,得到了这类模型的基本再生数R0,证明了R0<1无病平衡点是局部渐近稳定的,而当R0>1时无病平衡点是不稳定的.进一步讨论了疾病持续存在与无病平衡点和地方病平衡点全局稳定的条件.  相似文献   

11.
研究了具有常数输入及饱和发生率的脉冲接种SIQRS传染病模型,得到了疾病消除与否的阈值R_0=1.证明了当R_01时,系统存在全局渐近稳定的无病周期解;当R_01时,系统一致持久.  相似文献   

12.
In this paper, we propose a generalized SIRS epidemic model with varying total population size caused by the death rate due to the disease and transfer from infectious to susceptible, where the incidence rate employed includs a wide range of monotonic and concave incidence rates. Applying the geometric approach developed by Smith, Li and Muldowey, we prove that the endemic equilibrium is globally asymptotically stable provided that the rate of loss of immuity $\delta$ is in a critical interval $[\eta,\bar\delta)$ when the basic reproduction number $R_0$ is greater than unity.  相似文献   

13.
本文研究具有变量分离发生率的具时滞的多组传染病模型.首先,分别针对强连通和非强连通情形,得到基本再生数$R_0$. 然后运用Lyapunov泛函方法和LaSalle不变集原理分别分析了当$R_0<1$时无病平衡点$P_0$ 的全局渐近稳定性以及$R_0>1$时地方病平衡点$P^*$的全局渐近稳定性.  相似文献   

14.
In this paper, we propose a new SIV epidemic model with time delay, which also involves both direct and environmental transmissions. For such model, we first introduce the basic reproduction number $\mathscr{R}$ by using the next generation matrix. And then global stability of the equilibria is discussed by means of Lyapunov functionals and LaSalle''s invariance principle for delay differential equations, which shows that the infection-free equilibrium of the system is globally asymptotically stable if $\mathscr{R}<1$ and the epidemic equilibrium of the system is globally asymptotically stable for $\m  相似文献   

15.
To understand V.Cholera transmission dynamics, in this paper, a mathematical model for the dynamics of cholera with reinfection is formulated that incorporates the duration time of the recovery individuals (age-of-immunity). The basic reproduction number $\Re_0$ for the model is identified and the threshold property of $\Re_0$ is established. By applying the persistence theory for infinite-dimensional systems, we show that the disease is uniformly persistent if the reproductive number $ \Re_0>1$. By constructing a suitable Lyapunov function, the global stability of the infection-free equilibrium in the system is obtained for $\Re_0<1$; the unique endemic equilibrium of the system is globally asymptotically stable for $\Re_0>1$.  相似文献   

16.
In this paper, an HIV/AIDS epidemic model is proposed in which there are two susceptible classes. Two types of general nonlinear incidence functions are employed to depict the scenarios of infection among cautious and incautious individuals. Qualitative analyses are performed, in terms of the basic reproduction number $\R_0$, to gain the global dynamics of the model: the disease-free equilibrium is of global asymptotic stability when $\R_0\leq 1$; a unique endemic equilibrium exists and globally asymptotically stable $\R_0> 1$. The introduction of cautious susceptible and the resulting multiple transmission functions has positive effect on HIV/AIDS prevalence. Numerical simulations are carried out to illustrate and extend the obtained analytical results.  相似文献   

17.
主要研究了具有标准发生率和因病死亡率的离散SIS传染病模型的动力学性质,利用构造Lyapunov函数,得到模型无病平衡点和地方性平衡点的全局稳定性,即无病平衡点是全局渐近稳定的当且仅当基本再生数R_0≤1,地方病平衡点是全局渐近稳定的当且仅当R_0>1.  相似文献   

18.
考虑到HIV-1感染过程中免疫反应和非线性感染函数,建立了一类具有三个分布时滞的HIV-1感染动力学模型.得到了关于病毒感染的基本再生数R0和CTLs免疫反应的基本再生数R1 <R0.通过构造Lyapunov泛函证明了系统具有阈值动力学性质,即当R0≤1时,系统存在全局渐近稳定的无感染平衡点;当R1≤1<R0时,系统出...  相似文献   

19.
一个有快慢进展的TB模型的全局稳定性分析   总被引:1,自引:0,他引:1  
建立了一个有快慢进展、接种和治疗的TB模型,定义了模型的基本再生数R0,通过构造Lyapunov函数来研究解的渐近性态.证明了当R01时,无病平衡点是全局渐近稳定的;也证明了当R0>1时,惟一的地方病平衡点是全局渐近稳定的.  相似文献   

20.
具有Logistic增长和年龄结构的SIS模型   总被引:3,自引:2,他引:1  
讨论具有Logistic增长和年龄结构的SIS流行病模型.运用微分、积分方程理论,得到了当再生数R0<1时,无病平衡点E0是全局渐近稳定的;当R0>1时,地方病平衡点E*是局部渐近稳定的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号