首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, we present the deterministic and stochastic delayed SIQS epidemic models. For the deterministic model, the basic reproductive number $R_{0}$ is given. Moreover, when $R_{0}<1$, the disease-free equilibrium is globally asymptotical stable. When $R_{0}>1$ and additional conditions hold, the endemic equilibrium is globally asymptotical stable. For the stochastic model, a sharp threshold $\overset{\wedge }{R}_{0}$ which determines the extinction or persistence in the mean of the disease is presented. Sufficient conditions for extinction and persistence in the mean of the epidemic are established. Numerical simulations are also conducted in the analytic results.  相似文献   

2.
该文研究一类具有种群Logistic增长及饱和传染率的SIS传染病模型,讨论了平衡点的存在性及全局渐近稳定性,得到疾病消除的阈值就是基本再生数$R_{0}=1$. 证明了,当$R_{0}<1$ 时,无病平衡点全局渐近稳定;当$R_{0}>1$ 且$\alpha K\leq 1$ 时,正平衡点全局渐近稳定;当$R_{0}>1$ 且$\Delta ={0}$ 时,系统在正平衡点附近发生Hopf分支;当$R_{0}>1$ 且$\Delta <{0}$ 时,系统在正平衡点外围附近存在唯一稳定的极限环.  相似文献   

3.
In this paper, we study a viral infection model with an immunity time delay accounting for the time between the immune system touching antigenic stimulation and generating CTLs. By calculation, we derive two thresholds to determine the global dynamics of the model, i.e., the reproduction number for viral infection $R_{0}$ and for CTL immune response $R_{1}$. By analyzing the characteristic equation, the local stability of each feasible equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the CTL-activated infection equilibrium is also studied. By constructing suitable Lyapunov functionals, we prove that when $R_{0}\leq1$, the infection-free equilibrium is globally asymptotically stable; when $R_{0}>1$ and $R_{1}\leq1$, the CTL-inactivated infection equilibrium is globally asymptotically stable; Numerical simulation is carried out to illustrate the main results in the end.  相似文献   

4.
Recent investigation indicated that latent reservoir and immune impairment are responsible for the post-treatment control of HIV infection. In this paper, we simplify the disease model with latent reservoir and immune impairment and perform a series of mathematical analysis. We obtain the basic infection reproductive number $R_{0}$ to characterize the viral dynamics. We prove that when $R_{0}<1$, the uninfected equilibrium of the proposed model is globally asymptotically stable. When $R_{0}>1$, we obtain two thresholds, the post-treatment immune control threshold and the elite control threshold. The model has bistable behaviors in the interval between the two thresholds. If the proliferation rate of CTLs is less than the post-treatment immune control threshold, the model does not have positive equilibria. In this case, the immune free equilibrium is stable and the system will have virus rebound. On the other hand, when the proliferation rate of CTLs is greater than the elite control threshold, the system has stable positive immune equilibrium and unstable immune free equilibrium. Thus, the system is under elite control.  相似文献   

5.
To understand the impact of free-living pathogens (FLP) on the epidemics, an epidemic model with FLP is constructed. The global dynamics of our model are determined by the basic reproduction number $R_0$. If $R_0<1$, the disease free equilibrium is globally asymptotically stable, and if $R_0>1$, the endemic equilibrium is globally asymptotically stable. Some numerical simulations are also carried out to illustrate our analytical results.  相似文献   

6.
研究了具有常数输入及饱和发生率的脉冲接种SIQRS传染病模型,得到了疾病消除与否的阈值R_0=1.证明了当R_01时,系统存在全局渐近稳定的无病周期解;当R_01时,系统一致持久.  相似文献   

7.
In this paper, we investigate a class of multi-group epidemic models with general exposed distribution and nonlinear incidence rate. Under biologically motivated assumptions, we show that the global dynamics are completely determined by the basic production number $R_0$. The disease-free equilibrium is globally asymptotically stable if $R_0\leq1$, and there exists a unique endemic equilibrium which is globally asymptotically stable if $R_0>1$. The proofs of the main results exploit the persistence theory in dynamical system and a graph-theoretical approach to the method of Lyapunov functionals. A simpler case that assumes an identical natural death rate for all groups and a gamma distribution for exposed distribution is also considered. In addition, two numerical examples are showed to illustrate the results.  相似文献   

8.
研究一类种群有迁移的流行病模型,得到了这类模型的基本再生数R0,证明了R0<1无病平衡点是局部渐近稳定的,而当R0>1时无病平衡点是不稳定的.进一步讨论了疾病持续存在与无病平衡点和地方病平衡点全局稳定的条件.  相似文献   

9.
In this paper, a heroin epidemic model on complex networks is proposed. By the next generation matrix, the basic reproduction number $R_0$ is obtained. If $R_0<1$, then the drug-free equilibrium is globally asymptotically stable. If $R_0>1$, there is an unique endemic equilibrium and it is also globally asymptotically stable. Our results show that if the degree of the network is large enough, the drug transmission always spreads. Sensitivity analysis of the basic reproduction number with the various parameters in the model are carried out to verify the important effects for control the drug transmission. Some simulations illustrate our theoretical results  相似文献   

10.
This paper mainly investigates the global asymptotic stabilities of two HIV dynamics models with two distributed intracellular delays incorporating Beddington-DeAngelis functional response infection rate. An eclipse stage of infected cells (i.e. latently infected cells), not yet producing virus, is included in our models. For the first model, it is proven that if the basic reproduction number $R_0$ is less than unity, then the infection-free equilibrium is globally asymptotically stable, and if $R_0 $ is greater than unity, then the infected equilibrium is globally asymptotically stable. We also obtain that the disease is always present when $R_0 $ is greater than unity by using a permanence theorem for infinite dimensional systems. What is more, a n-stage-structured HIV model with two distributed intracellular delays, which is the extensions to the first model, is developed and analyzed. We also prove the global asymptotical stabilities of two equilibria by constructing suitable Lyapunov functionals.  相似文献   

11.
The transmission mechanism of some animal diseases is complex because of the multiple transmission pathways and multiple-group interactions, which lead to the limited understanding of the dynamics of these diseases transmission. In this paper, a delay multi-group dynamic model is proposed in which time delay is caused by the latency of infection. Under the biologically motivated assumptions, the basic reproduction number $R_0$ is derived and then the global stability of the disease-free equilibrium and the endemic equilibrium is analyzed by Lyapunov functionals and a graph-theoretic approach as for time delay. The results show the global properties of equilibria only depend on the basic reproductive number $R_0$: the disease-free equilibrium is globally asymptotically stable if $R_0\leq 1$; if $R_0>1$, the endemic equilibrium exists and is globally asymptotically stable, which implies time delay span has no effect on the stability of equilibria. Finally, some specific examples are taken to illustrate the utilization of the results and then numerical simulations are used for further discussion. The numerical results show time delay model may experience periodic oscillation behaviors, implying that the spread of animal diseases depends largely on the prevention and control strategies of all sub-populations.  相似文献   

12.
In this paper, we propose a generalized SIRS epidemic model with varying total population size caused by the death rate due to the disease and transfer from infectious to susceptible, where the incidence rate employed includs a wide range of monotonic and concave incidence rates. Applying the geometric approach developed by Smith, Li and Muldowey, we prove that the endemic equilibrium is globally asymptotically stable provided that the rate of loss of immuity $\delta$ is in a critical interval $[\eta,\bar\delta)$ when the basic reproduction number $R_0$ is greater than unity.  相似文献   

13.
This paper formulates a stochastic SIR epidemic model by supposing that the infection force is perturbed by Brown motion and L\''{e}vy jumps. The globally positive and bounded solution is proved firstly by constructing the suitable Lyapunov function. Then, a stochastic basic reproduction number $R_0^{L}$ is derived, which is less than that for the deterministic model and the stochastic model driven by Brown motion. Analytical results show that the disease will die out if $R_0^{L}<1$, and $R_0^{L}>1$ is the necessary and sufficient condition for persistence of the disease. Theoretical results and numerical simulations indicate that the effects of L\''{e}vy jumps may lead to extinction of the disease while the deterministic model and the stochastic model driven by Brown motion both predict persistence. Additionally, the method developed in this paper can be used to investigate a class of related stochastic models driven by L\''{e}vy noise.  相似文献   

14.
Host migration among discrete geographical regions is demonstrated as an important factor that brings about the diffusion and outbreak of many vector-host diseases. In the paper, we develop a mathematical model to explore the effect of host migration between two patches on the spread of a vector-host disease. Analytical results show that the reproduction number R0 provides a threshold condition that determines the uniform persistence and extinction of the disease. If both the patches are identical, it is shown that an endemic equilibrium is locally stable. It is also shown that a unique endemic equilibrium, which exists when the disease cannot induce the death of the host, is globally asymptotically stable. Finally, two examples are given to illustrate the effect of host migration on the spread of the vector-host disease.  相似文献   

15.
In this paper, an SIS model incorporating the effects of awareness spreading on epidemic is analyzed. Four kinds of equilibria of the model are given, and a new method is used to prove the stability of the equilibria. The threshold of awareness is $R_{1}^{a}$, which measures whether awareness spreads. When awareness does not spread, the basic reproduction number of disease is $R_{1}^{d}$, it is $R_{2}^{d}$ when awareness spreads. The relationship among the three kinds of thresholds is discussed in details. Specially, the effects of various awareness parameters on epidemic are analyzed. Our theoretical results suggest that raising awareness can effectively reduce the basic reproduction number of disease and reduce the spread of disease. Furthermore, numerical simulations are performed to illustrate our results.  相似文献   

16.
In this paper, we propose a new SIV epidemic model with time delay, which also involves both direct and environmental transmissions. For such model, we first introduce the basic reproduction number $\mathscr{R}$ by using the next generation matrix. And then global stability of the equilibria is discussed by means of Lyapunov functionals and LaSalle''s invariance principle for delay differential equations, which shows that the infection-free equilibrium of the system is globally asymptotically stable if $\mathscr{R}<1$ and the epidemic equilibrium of the system is globally asymptotically stable for $\m  相似文献   

17.
In this paper, we establish a novel delayed SIQS epidemic model on scale-free networks, where time delay represents the average quarantine period. Through mathematical analysis, we present the basic reproduction number $R_{0}$. Then, we provide the global asymptotical stability of the disease-free equilibrium and the local asymptotical stability of the endemic equilibrium. Finally, we perform numerical simulations to verify the correctness of the main results and analyze the sensitivity of parameters. Our research shows that when $R_0>1$, lengthening the quarantine period can slow the spread of the disease and reduce the number of infected individuals.  相似文献   

18.
Epidemic models are very important in today''s analysis of diseases. In this paper, we propose and analyze an epidemic model incorporating quarantine, latent, media coverage and time delay. We analyze the local stability of either the disease-free and endemic equilibrium in terms of the basic reproduction number $\mathcal{R}_{0}$ as a threshold parameter. We prove that if $\mathcal{R}_{0}<1,$ the time delay in media coverage can not affect the stability of the disease-free equilibrium and if $\mathcal{R}_{0}>1$, the model has at least one positive endemic equilibrium, the stability will be affected by the time delay and some conditions for Hopf bifurcation around infected equilibrium to occur are obtained by using the time delay as a bifurcation parameter. We illustrate our results by some numerical simulations such that we show that a proper application of quarantine plays a critical role in the clearance of the disease, and therefore a direct contact between people plays a critical role in the transmission of the disease.  相似文献   

19.
We study the global dynamics of a time delayed epidemic model proposed by Liu et al. (2008) [J. Liu, J. Wu, Y. Zhou, Modeling disease spread via transport-related infection by a delay differential equation, Rocky Mountain J. Math. 38 (5) (2008) 1525–1540] describing disease transmission dynamics among two regions due to transport-related infection. We prove that if an endemic equilibrium exists then it is globally asymptotically stable for any length of time delay by constructing a Lyapunov functional. This suggests that the endemic steady state for both regions is globally asymptotically stable regardless of the length of the travel time when the disease is transferred between two regions by human transport.  相似文献   

20.
To understand V.Cholera transmission dynamics, in this paper, a mathematical model for the dynamics of cholera with reinfection is formulated that incorporates the duration time of the recovery individuals (age-of-immunity). The basic reproduction number $\Re_0$ for the model is identified and the threshold property of $\Re_0$ is established. By applying the persistence theory for infinite-dimensional systems, we show that the disease is uniformly persistent if the reproductive number $ \Re_0>1$. By constructing a suitable Lyapunov function, the global stability of the infection-free equilibrium in the system is obtained for $\Re_0<1$; the unique endemic equilibrium of the system is globally asymptotically stable for $\Re_0>1$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号