首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 84 毫秒
1.
简单图的最大匹配的矩阵求法   总被引:1,自引:0,他引:1  
简单图的最大匹配与完美匹配一般算起来比较困难,而且至今未见用矩阵解决这类问题的报道.利用图的邻接矩阵及关联矩阵求简单图的最大匹配和二分图的完美匹配,对于二分图的完美匹配及一般简单图的最大匹配各给出了两种方法,这些方法简洁又便于用矩阵软件进行计算.  相似文献   

2.
设G是含有完美匹配的简单图. 称图G是偶匹配可扩的(BM-可扩的), 如果G的每一个导出子图是偶图的匹配M都可以扩充为一个完美匹配. 极图问题是图论的核心问题之一. 本文将刻画极大偶匹配不可扩图, 偶图图类和完全多部图图类中的极大偶匹配可扩图.  相似文献   

3.
设G是含有完美匹配的简单图.称图G是偶匹配可扩的(BM-可扩的),如果G的每一个导出子图是偶图的匹配M都可以扩充为一个完美匹配.极图问题是图论的核心问题之一.本文将刻画极大偶匹配不可扩图,偶图图类和完全多部图图类中的极大偶匹配可扩图.  相似文献   

4.
设G=(V(G),E(G))是一个图,M是E(G)的—个子集.如果M中任意两条边均无公共端点,则称M为图G的匹配.如果图G的一个匹配M中的边恰好关联G的每一个顶点,则称M为图G的完美匹配.如果图G中除了一个顶点以外,其他所有顶点都与匹配M中的边相关联,则称M为图G的几乎完美匹配.如果对任意v∈V(G), G-v均有完美匹配,则称G是因子临界的.本文中,我们给出了判定一个图有完美匹配、或者几乎完美匹配或者是因子临界的拉普拉斯谱条件.  相似文献   

5.
一个图的条件匹配排除数是最少的边的数量,使得从图中删除这些边后形成的图既没有孤立点,也没有完美匹配和几乎完美匹配.条件匹配排除数是衡量网络在边故障情况下的鲁棒性的参数之一.本文给出了对称群上Cayley图的条件匹配排除数.  相似文献   

6.
若一个连通图的每条边都包含在某一完美匹配中,则称之为匹配覆盖图.设G是一个3-连通图,若去掉G的任意两个顶点后得到的子图仍有完美匹配,则称G是一个brick.而brick的重要性在于它是匹配覆盖图的组成结构因子.3-边可染3-正则5的刻画问题是一个NP-完全问题.本文将此问题规约到3-正则匹配覆盖图上,进而规约到其组成结构因子brick上.我们证明了:一个3-正则图是3-边可染的当且仅当它的所有brick是3-边可染的.  相似文献   

7.
一个简单图G, 如果对于V(G)的任意k元子集S, 子图G-S都包含分数完美匹配, 那么称G为分数k-因子临界图. 如果图G的每个k-匹配M都包含在一个分数完美匹配中, 那么称图G为分数k-可扩图. 给出一个图是分数k-因子临界图和分数k-可扩图的充分条件, 并给出一个图是分数k-因子临界图的充分必要条件.  相似文献   

8.
林峰根 《数学研究》2013,(4):382-387
研究3-正则图的一个有意义的问题是它是否存在k个没有共边的完美匹配.关于这个问题有一个著名的Fan-Raspaud猜想:每一个无割边的3-正则图都有3个没有共边的完美匹配.但这个猜想至今仍未解决.设dim(P(G))表示图G的完美匹配多面体的维数.本文证明了对于无割边的3-正则图G,如果dim(P(G))≤14,那么k≤4:如果dim(P(G))≤20,那么k≤5.  相似文献   

9.
王迪吉 《数学研究》1996,29(2):76-80
本文定义了一类由给定的一个3-正则平面偶图的全体完美匹配所构成的变换图,并证明了该变换图是连通的.由此可得出结论:从任一给定的3-正则平面偶图的完美匹配出发,通过一种所谓的旋转运算,就可以生成全部其它的完美匹配.  相似文献   

10.
边红 《数学研究》2009,42(3):275-279
为了研究具有完美匹配图的Tuttc集和极端集,文献[1,2]提出了一种新的图运算,并且得到了许多有趣的性质。本文中,我们刻画了level(G)=0的具有唯一完美匹配的饱和图G,并且确定了具有唯一完美匹配图的D-图的边数的紧上界。  相似文献   

11.
12.
We consider the question of characterizing Pfaffian graphs. We exhibit an infinite family of non-Pfaffian graphs minimal with respect to the matching minor relation. This is in sharp contrast with the bipartite case, as Little [C.H.C. Little, A characterization of convertible (0,1)-matrices, J. Combin. Theory Ser. B 18 (1975) 187–208] proved that every bipartite non-Pfaffian graph contains a matching minor isomorphic to K3,3. We relax the notion of a matching minor and conjecture that there are only finitely many (perhaps as few as two) non-Pfaffian graphs minimal with respect to this notion.We define Pfaffian factor-critical graphs and study them in the second part of the paper. They seem to be of interest as the number of near perfect matchings in a Pfaffian factor-critical graph can be computed in polynomial time. We give a polynomial time recognition algorithm for this class of graphs and characterize non-Pfaffian factor-critical graphs in terms of forbidden central subgraphs.  相似文献   

13.
We introduce a family of graphs, called cellular, and consider the problem of enumerating their perfect matchings. We prove that the number of perfect matchings of a cellular graph equals a power of 2 times the number of perfect matchings of a certain subgraph, called the core of the graph. This yields, as a special case, a new proof of the fact that the Aztec diamond graph of order n introduced by Elkies, Kuperberg, Larsen and Propp has exactly 2 n(n+1)/2 perfect matchings. As further applications, we prove a recurrence for the number of perfect matchings of certain cellular graphs indexed by partitions, and we enumerate the perfect matchings of two other families of graphs called Aztec rectangles and Aztec triangles.  相似文献   

14.
The forcing number or the degree of freedom of a perfect matching M of a graph G is the cardinality of the smallest subset of M that is contained in no other perfect matchings of G. In this paper we show that the forcing numbers of perfect matchings in a fullerene graph are not less than 3 by applying the 2-extendability and cyclic edge-connectivity 5 of fullerene graphs obtained recently, and Kotzig’s classical result about unique perfect matching as well. This lower bound can be achieved by infinitely many fullerene graphs.  相似文献   

15.
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. For many interconnection networks, the optimal sets are precisely those induced by a single vertex. Recently, the conditional matching preclusion number of a graph was introduced to look for obstruction sets beyond those induced by a single vertex. It is defined to be the minimum number of edges whose deletion results in a graph with no isolated vertices and neither perfect matchings nor almost-perfect matchings. In this paper, we prove general results regarding the matching preclusion number and the conditional matching preclusion number as well as the classification of their respective optimal sets for regular graphs. We then use these general results to study the problems for Cayley graphs generated by 2-trees and the hyper Petersen networks.  相似文献   

16.
Perfect matchings of k-Pfaffian graphs may be enumerated in polynomial time on the number of vertices, for fixed k. In general, this enumeration problem is #P-complete. We give a Composition Theorem of 2r-Pfaffian graphs from r Pfaffian spanning subgraphs. Constructions of k-Pfaffian graphs known prior to this seem to be of a very different and essentially topological nature. We apply our Composition Theorem to produce a bipartite graph on 10 vertices that is 6-Pfaffian but not 4-Pfaffian. This is a counter-example to a conjecture of Norine (2009) [8], which states that the Pfaffian number of a graph is a power of four.  相似文献   

17.
It is shown that in a 0-sum Boolean weighted graph G the sum of the weights taken over all the spanning trees equals the sum of the weights taken over all the perfect matchings in the graph Gv, where v is any vertex of G. Several related theorems are proved which include parity results on perfect matchings and spanning trees in Eulerian graphs. The ideas on perfect matchings in 0-sum Boolean weighted graphs are generalized to matchings in any Boolean weighted graph.  相似文献   

18.
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings, and the conditional matching preclusion number of a graph is the minimum number of edges whose deletion leaves a resulting graph with no isolated vertices that has neither perfect matchings nor almost perfect matchings. In this paper, we find these two numbers for the burnt pancake graphs and show that every optimal (conditional) matching preclusion set is trivial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号