首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
宋晓新 《数学研究》2002,35(4):397-405
Fan和Raspaud1994年提出如下猜想:任一无桥3正则图必有三个交为空集的完美匹配。本研究一类特殊的无桥3正则图G:存在图的G的一个完美匹配M1使得G-M1恰含有两个奇圈和若干偶圈。在偶圈数≤2的情形以及在偶圈数≤4且G是圈4-边连通的情形,本证明了一定存在图G的两个完善匹配M2和M3使得M1∩M2∩M3=φ。  相似文献   

2.
本文研究了复合图1-因子分解问题,给出了复合图可1-因子分解的几个充分条件.设图G和H都是正则因,那么G和H的复合图G[H]可1-因子分解,如果G和H满足下列三个条件之一:(1)G可1-因子分解;(2)G至少有 1-因子,H为偶阶正则图[V(H)|≥2;(3)G可以分解为一些1-因子和2-因子之并,H为偶阶正则图且至少有max{0,△(H)-4}个1-因子.  相似文献   

3.
宋晓新 《数学研究》2002,35(4):397-405
Fan和Raspaud 1994年提出如下猜想任一无桥3正则图必有三个交为空集的完美匹配. 本文研究一类特殊的无桥3正则图G存在图G的一个完美匹配M1使得G-M1恰含有两个奇圈和若干偶圈. 在偶圈数≤2的情形以及在偶圈数≤4且G是圈4-边连通的情形,本文证明了一定存在图G的两个完美匹配M2和M3使得M1∩M2∩M3=φ.  相似文献   

4.
Fan和Raspaud 1994年提出如下猜想:任一无桥3正则图必有三个交为空集的完美匹配.本文证明了如下结果:若G是一个圈4-边连通的无桥3正则图,且存在G的一个完美匹配M1使得G—M1恰为4个奇圈的不交并,则存在图G的两个完美匹配M2和M3使得M1∩M2∩M3=Φ。  相似文献   

5.
这篇注记证明判断一个图是否有3-正则子图的问题,即使对于节点次不超过4的平面力,仍然是NP-完全的,而且,此结果是最好的可能。  相似文献   

6.
张莲珠 《数学研究》1998,31(4):437-441
六角系统是2-连通的平面图,其每个内部面都是单位正六边形.六角系统的完美匹配是化学中苯类芳烃体系的Kekule结构.一个六角系统H完美匹配Z—变换图Z(H)是一个图,它的顶点集是H的完匹配集,两个匹配相邻当且仅当它们的对称差是一个单位正六边形.本文用乘积图刻划了沙位六角系统Z—变换图的结构.  相似文献   

7.
图的最大亏格与2-因子   总被引:13,自引:0,他引:13  
图G的一个2因子F就是G的这样一个支撑子图,使其任何节点v∈V的次dF(v)=2.易见,G的每个2因子均为无公共节点的圈之并.若F的每个圈的长均为3(或4),则称G含有一个三角形(或四边形)2因子.M.k∨oviera[5]得到了含有三角形2因子的3-正则图的最大亏格.本文在3-正则图上,引进了扩张运算和讨论了与最大亏格和Beti亏数之间的关系.利用这些运算,得到了所有含四边形2因子的连通3-正则图是上可嵌入的,即γM(G)=n4(n为G的节点数n=|V(G)|).然后,基于此证明了含四边形2因子且所有节点v∈V的次dG(v)=3(mod4)的图G均为上可嵌入的  相似文献   

8.
设G是含有完美匹配的简单图.称图G是偶匹配可扩的(BM-可扩的),如果G的每一个导出子图是偶图的匹配M都可以扩充为一个完美匹配.极图问题是图论的核心问题之一.本文将刻画极大偶匹配不可扩图,偶图图类和完全多部图图类中的极大偶匹配可扩图.  相似文献   

9.
图G的一个匹配M是导出的,若M是图G的一个导出子图。图G是导邮匹配可扩的(简记IM-可扩的),若图G的任一导出匹配均含于图G的一个完美匹配当中。本文我们将证明如下结果。⑴对无爪图而言,问题“给定图G以及一个正整数r,确定是否存在图G的一个导出匹配M使得M≥r”是NP-完全的。⑵对直径为2的图以及直径为3的偶图,问题“确定一个给定图是否为导出匹配可扩的”是CO-NP完全的;而对完全多部图而言,问题“  相似文献   

10.
导出匹配可扩图的度条件刘 岩 原晋江 王世英(郑州大学系统科学与数学系)如果图G的每个导出匹配都包含在G的一个完美匹配中,那么称G是导出匹配可扩图.该文主要研究导出匹配可扩图的度条件,主要结果是:(1)最小度至少为2n3的图都是导出匹配可扩图,而且该最小度的下界是精确的,其中n是图的顶点数,n是偶数且至少为6;(2)正则度至少为2n-23的正则图都是导出匹配可扩图,而且该正则度的下界是精确的,其中n是图的顶点数且为偶数,n至少为8且不等于10.关于一类Bush型分形曲面的维数分析王宏勇(西安交通…  相似文献   

11.
图G的最大匹配的路变换图NM(G)是这样一个图,它以G的最大匹配为顶点,如果两个最大匹配M_1与M_2的对称差导出的图是一条路(长度没有限制),那么M_1和M_2在NM(G)中相邻.研究了这个变换图的连通性,分别得到了这个变换图是一个完全图或一棵树或一个圈的充要条件.  相似文献   

12.
The forcing number or the degree of freedom of a perfect matching M of a graph G is the cardinality of the smallest subset of M that is contained in no other perfect matchings of G. In this paper we show that the forcing numbers of perfect matchings in a fullerene graph are not less than 3 by applying the 2-extendability and cyclic edge-connectivity 5 of fullerene graphs obtained recently, and Kotzig’s classical result about unique perfect matching as well. This lower bound can be achieved by infinitely many fullerene graphs.  相似文献   

13.
林峰根 《数学研究》2013,(4):382-387
研究3-正则图的一个有意义的问题是它是否存在k个没有共边的完美匹配.关于这个问题有一个著名的Fan-Raspaud猜想:每一个无割边的3-正则图都有3个没有共边的完美匹配.但这个猜想至今仍未解决.设dim(P(G))表示图G的完美匹配多面体的维数.本文证明了对于无割边的3-正则图G,如果dim(P(G))≤14,那么k≤4:如果dim(P(G))≤20,那么k≤5.  相似文献   

14.
Let G be a regular bipartite graph and . We show that there exist perfect matchings of G containing both, an odd and an even number of edges from X if and only if the signed graph , that is a graph G with exactly the edges from X being negative, is not equivalent to . In fact, we prove that for a given signed regular bipartite graph with minimum signature, it is possible to find perfect matchings that contain exactly no negative edges or an arbitrary one preselected negative edge. Moreover, if the underlying graph is cubic, there exists a perfect matching with exactly two preselected negative edges. As an application of our results we show that each signed regular bipartite graph that contains an unbalanced circuit has a 2‐cycle‐cover such that each cycle contains an odd number of negative edges.  相似文献   

15.
We consider the problem of testing the uniqueness of maximum matchings, both in the unweighted and in the weighted case. For the unweighted case, we have two results. First, given a graph with n vertices and m edges, we can test whether the graph has a unique perfect matching, and find it if it exists, in O(m log4 n) time. This algorithm uses a recent dynamic connectivity algorithm and an old result of Kotzig characterizing unique perfect matchings in terms of bridges. For the special case of planar graphs, we improve the algorithm to run in O(n log n) time. Second, given one perfect matching, we can test for the existence of another in linear time. This algorithm is a modification of Edmonds' blossom-shrinking algorithm implemented using depth-first search. A generalization of Kotzig's theorem proved by Jackson and Whitty allows us to give a modification of the first algorithm that tests whether a given graph has a unique f-factor, and find it if it exists. We also show how to modify the second algorithm to check whether a given f-factor is unique. Both extensions have the same time bounds as their perfect matching counterparts. For the weighted case, we can test in linear time whether a maximum-weight matching is unique, given the output from Edmonds' algorithm for computing such a matching. The method is an extension of our algorithm for the unweighted case.  相似文献   

16.
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings, and the conditional matching preclusion number of a graph is the minimum number of edges whose deletion leaves a resulting graph with no isolated vertices that has neither perfect matchings nor almost perfect matchings. In this paper, we find these two numbers for the burnt pancake graphs and show that every optimal (conditional) matching preclusion set is trivial.  相似文献   

17.
We introduce a family of graphs, called cellular, and consider the problem of enumerating their perfect matchings. We prove that the number of perfect matchings of a cellular graph equals a power of 2 times the number of perfect matchings of a certain subgraph, called the core of the graph. This yields, as a special case, a new proof of the fact that the Aztec diamond graph of order n introduced by Elkies, Kuperberg, Larsen and Propp has exactly 2 n(n+1)/2 perfect matchings. As further applications, we prove a recurrence for the number of perfect matchings of certain cellular graphs indexed by partitions, and we enumerate the perfect matchings of two other families of graphs called Aztec rectangles and Aztec triangles.  相似文献   

18.
This paper considers some classes of graphs which are easily seen to have many perfect matchings. Such graphs can be considered robust with respect to the property of having a perfect matching if under vertex deletions (with some mild restrictions), the resulting subgraph continues to have a perfect matching. It is clear that you can destroy the property of having a perfect matching by deleting an odd number of vertices, by upsetting a bipartition or by deleting enough vertices to create an odd component. One class of graphs we consider is the m×m lattice graph (or grid graph) for m even. Matchings in such grid graphs correspond to coverings of an m×m checkerboard by dominoes. If in addition to the easy conditions above, we require that the deleted vertices be apart, the resulting graph has a perfect matching. The second class of graphs we consider is a k-fold product graph consisting of k copies of a given graph G with the ith copy joined to the i+1st copy by a perfect matching joining copies of the same vertex. We show that, apart from some easy restrictions, we can delete any vertices from the kth copy of G and find a perfect matching in the product graph with k suitably large.  相似文献   

19.
Let G be a graph that admits a perfect matching M. A forcing set S for a perfect matching M is a subset of M such that it is contained in no other perfect matchings of G. The smallest cardinality of forcing sets of M is called the forcing number of M. Computing the minimum forcing number of perfect matchings of a graph is an NP-complete problem. In this paper, we consider boron-nitrogen (BN) fullerene graphs, cubic 3-connected plane bipartite graphs with exactly six square faces and other hexagonal faces. We obtain the forcing spectrum of tubular BN-fullerene graphs with cyclic edge-connectivity 3. Then we show that all perfect matchings of any BN-fullerene graphs have the forcing number at least two. Furthermore, we mainly construct all seven BN-fullerene graphs with the minimum forcing number two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号