首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
使用含时波包方法 ,在Capecchi和Werner拟合的非绝热耦合势能面上 ,研究了Cl处在自旋轨道基态以及自旋轨道激发态时与H2 反应的活性 ,并且讨论了Coriolis耦合的影响 .计算了某些角动量时的反应几率 .计算结果显示 ,当Cl原子处在自旋轨道激发态与处在基态的H2 的反应活性很小 ,Coriolis耦合在这个反应中起了很小的作用 .  相似文献   

2.
利用全量子的分子轨道强耦合方法,我们研究了基态的O^3+(2s^22p^2P)与氚分子和氢分子碰撞的电荷转移过程,计算了方位角为45°,能量分别为0.1eV/u,1.0eV/u,100eV/u,500eV/u的单电子俘获的振动分辨的态选择截面及总截面.分子轨道强耦合计算中采用了自旋耦合价带理论计算的三原子分子势能面和径向耦合矩阵元,对体系的电子运动同H2(T2)或H2^+(T2^+)的转动和振动之间的耦合,根据能量的不同,分别采用了无限阶的冲量近似或振动冲量近似.结果发现,低能O^3+与H2碰撞电子俘获过程中靶的同位素效应显著:对不同的同位素靶,单电子俘获的总截面以及振动分辨态选择截面的分布明显不同;入射离子能量越低,同位素效应越显著.  相似文献   

3.
利用全量子的分子轨道强耦合方法,我们研究了基态的O3 (2s22p2P)与氚分子和氢分子碰撞的电荷转移过程,计算了方位角为45°,能量分别为0.1eV/u,1.0eV/u,100eV/u,500eV/u的单电子俘获的振动分辨的态选择截面及总截面.分子轨道强耦合计算中采用了自旋耦合价带理论计算的三原子分子势能面和径向耦合矩阵元.对体系的电子运动同H2(T2)或H2 (T2 )的转动和振动之间的耦合,根据能量的不同,分别采用了无限阶的冲量近似或振动冲量近似.结果发现,低能O3 与H2碰撞电子俘获过程中靶的同位素效应显著:对不同的同位素靶,单电子俘获的总截面以及振动分辨态选择截面的分布明显不同;入射离子能量越低,同位素效应越显著.  相似文献   

4.
利用全量子的分子轨道强耦舍方法。我们研究了基态的O^3(2s^22p^2P)与氢分子碰撞的解南电荷转移过程.分子轨道强耦合计算中采用了自旋耦合价带理论计算的三原子分子势能面和径向耦合矩阵元.对氢分子的自身转动,我们采用无限阶的冲量近似方法,在入射离子能量为0.1 eV/u到500 eV/u的能量区间。我们得到了非解离碰撞过程的振动态选择单电子俘获截面和解离碰撞过程的单电子俘获微分截面,发现解离碰撞截面大约占非解离过程的10%.这表明在实际的应用中。必须包含解离俘获过程的贡献.  相似文献   

5.
利用量子力学耦合通道扭曲波近似法(CCDWA)和三种势能面计算了H+H2碰撞的反应几率,结果发现在相同的势能面下利用CCDWA方法计算的反应几率和公认较好的计算结果符合很好,不同势能面共线势垒高度的差别将引起反应几率的不同.  相似文献   

6.
利用全量子的分子轨道强耦合方法,我们研究了基态的O3+(2s22p2P)与氢分子碰撞的解离电荷转移过程.分子轨道强耦合计算中采用了自旋耦合价带理论计算的三原子分子势能面和径向耦合矩阵元.对氢分子的自身转动,我们采用无限阶的冲量近似方法.在入射离子能量为0.1 eV/u到500 eV/u的能量区间,我们得到了非解离碰撞过程的振动态选择单电子俘获截面和解离碰撞过程的单电子俘获微分截面,发现解离碰撞截面大约占非解离过程的10%.这表明在实际的应用中,必须包含解离俘获过程的贡献.  相似文献   

7.
采用多种方法,配有多种基组对BCl和BCl2分子的基态结构进行优化计算,优选出B3P86/6-311++G(3df,3pd)方法对BCl分子进行计算得到基态为 、键长 =1.7159nm,谐振频率为 ;优选出QCISD/6-31G(d,p)方法对BCl2分子进行计算得到基态为 ,平衡核间距RBCl=0.17284nm、键角 =125.3466o、离解能 =8.0592eV,并计算出了谐振频率和力常数.在此基础上,运用多体展式理论方法,推导出BCl2分子的解析势能函数,其等值势能面图准确呈现出BCl2分子的结构特征及能量变化曲线.由此讨论了Cl+BCl和B+ClCl分子反应的势能面特征.可用于研究该分子的微观反应动力学特性.  相似文献   

8.
H原子与卤素气体(F2,Cl2,Br2)的反应是典型的轻-重-重原子-双原子反应. 对于研究化学激光的基本反应途径十分重要. 之前所有的实验结果都表明,H+Br2→HBr+Br反应的势垒高度很小,甚至是负值. 本文基于11698个UCCSD(T)/CBS水平的从头算能量点,用FI-NN方法构建了HBr2体系的精确全维全域势能面,还包括了Br原子2P3/2轨道的自旋-轨道耦合. 势能面有一个下沉的势垒(-0.351 kcal/mol}),放热(ΔH0=-41.265 kcal/mol) 和实验值吻合的很好,在这个势能面上应用含时波包方法计算了H+Br2→HBr+Br反应的态-态积分和微分截面. 对初始基态反应,产物HBr(v′=2,3,4)态在所考虑的整个能量范围内占主导地位,说明HBr是振动态布居反转的. 温度300 K时,计算的产物振动分布在$v$$''$=3有最大值,在v′=0,1的分布可以忽略不计,这与Setser及合作者和Polanyi及合作者的实验结果相一致. 超过一半的总可用能量进入到产物的内部运动中,这其中大部分进入到振动中. 计算表明,反应物Br2的初始转动激发对产物振转态分布和微分截面影响很小,而初始振动激发则有一定影响. 在低能区域,初始振动激发到v0=5态很明显的增强了产物的振动激发. 在初始基态和初始转动激发态下,碰撞能量到0.5 eV的微分截面在后向达到峰值,但随着碰撞能量的增加,角分布的宽度显著增加. 对于初始振动激发态,产物微分截面的结构较为复杂,对高振动激发态产物有很强的前向散射峰.  相似文献   

9.
在QCISD/6311 (3df,3pd)水平上,优化出AlH2(X2A1)分子稳定构型为C2v,其平衡核间距Re=1.592、∠HAlH=118.68°,同时也计算出振动频率。在此基础上,根据微观可逆性原则,正确地判断了离解极限。使用多体项展式理论方法,导出了基态AlH2分子的分析势能函数,该势能表面准确地再现了AlH2(C2v)平衡结构,然后根据势能函数等值图讨论了H AlH反应和Al H2反应的势能面静态特征。结果表明在H AlH及Al H2两个通道上均存在鞍点,垒高前者为0.61eV,后者为3.28eV。  相似文献   

10.
本文利用高分辨的里德堡态氘原子标识-交叉分子束装置,研究了碰撞能为4.5~6.5 kcal/mol范围内Cl(~2P)[Cl(2~P_(3/2))和Cl~*(~2P_(1/2))]与D_2的反应.虽然自旋轨道激发态反应Cl~*(~2P_(1/2))+D_2在波恩-奥本海默(B-O)近似下本应是禁阻的,但实验中观测到了该反应的贡献.通过测量靠近后向的碰撞能相关的微分散射截面连线,发现低碰撞能下的产物主要来自于B-O近似禁阻的反应Cl~*+D_2.随着碰撞能的提高,自旋轨道基态反应Cl+D_2的反应性增加明显要比自旋轨道激发态反应Cl~*+D_2更快,并且在高碰撞能下成为产物的主要来源.实验结果表明:在低碰撞能下,Cl~*中自旋轨道激发态的额外能量,可以帮助B-O近似禁阻的反应Cl~*+D_2越过势垒;然而当碰撞能接近和高于反应势垒时,B-O近似允许的反应Cl+D_2占主导地位.Cl/Cl~*+D_2反应中B-O近似有效性的特征与共同位素反应Cl/Cl~*+H_2是一致的.  相似文献   

11.
本文利用高分辨的里德堡态氘原子标识-交叉分子束装置,研究了碰撞能为4.5∽6.5 kcal/mol范围内Cl(2P)[Cl(2P3/2)和Cl*(2P1/2)]与D2的反应. 虽然自旋轨道激发态反应Cl*(2P1/2)+D2在波恩-奥本海默(B-O)近似下本应是禁阻的,但实验中观测到了该反应的贡献. 通过测量靠近后向的碰撞能相关的微分散射截面连线,发现低碰撞能下的产物主要来自于B-O近似禁阻的反应Cl*+D2. 随着碰撞能的提高,自旋轨道基态反应Cl+D2的反应性增加明显要比自旋轨道激发态反应Cl*+D2更快,并且在高碰撞能下成为产物的主要来源. 实验结果表明:在低碰撞能下,Cl*中自旋轨道激发态的额外能量,可以帮助B-O近似禁阻的反应Cl*+D2越过势垒;然而当碰撞能接近和高于反应势垒时,B-O近似允许的反应Cl+D2占主导地位. Cl/Cl*+D2反应中B-O近似有效性的特征与其同位素反应Cl/Cl*+H2是一致的.  相似文献   

12.
袁美玲  李文涛 《物理学报》2019,68(8):83401-083401
采用含时量子波包方法结合二阶分裂算符传播子对初始态为(v=0, j=0)的O~++H_2→OH~++H反应体系在0.01—1.00 eV的碰撞能范围内进行了态分辨理论水平上的动力学计算.对反应概率、积分截面、微分截面以及固定初始态的热速率常数等动力学信息进行了计算并与文献报道的实验和理论结果进行了比较.结果表明本文的理论结果与实验结果十分符合.从微分截面的散射信息可知,在低碰撞能范围内,插入反应机制在反应中占据主导地位.随着碰撞能的增加,反应机制逐渐由插入机制变为抽取反应机制.  相似文献   

13.
在新的势能面上,用准经典轨迹的方法对H H2反应体系进行了动力学研究.理论计算的结果发现,这个反应体系的前向和后向的角分布基本是对称的.同时还给出了在不同碰撞能下这个反应体系的转动态的分布情况.在碰撞能的从0.124到1.424 eV时,反应H H2的积分截面是随着碰撞能的增加而逐渐降低的.而且理论计算结果与实验结果也符合的非常好.  相似文献   

14.
We present experimental verification of predicted resonance structure in the energy dependence of the H+D2 reaction. Specifically we predict and observe a broad resonance in the H+D2-->HD(v(') = 0,j(') = 7)+D reaction at a collision energy of 0. 94 eV. This resonance structure is roughly Gaussian with a full width at half maximum of 0.1 eV. These results represent the first experimentally observed resonance structure in the fundamental H+H2 reaction system.  相似文献   

15.
基于一个最新的CH2(X-3A″)势能面,运用切比雪夫波包方法对初始态为(v=0,j=0)的C(3P)+H2(X1∑g^+)→H(2S)+CH(2Π)反应体系在1.0-2.0 eV的碰撞能量范围内进行了动力学研究.通过对角动量量子数J=60以下的所有分波进行计算,得到了反应几率、积分散射截面和速率常数.计算中用到了耦合态近似方法和考虑科里奥利耦合效应的精确量子方法.通过对比发现,随着角动量量子数以及能量的增加,科里奥利耦合效应的影响越发显著,因而对于该反应体系,科里奥利耦合效应不可忽略.本文计算所得的积分散射截面和速率常数尚无实验数据可以比较,对该反应的后续研究有一定的参考价值.  相似文献   

16.
李文涛  于文涛  姚明海 《物理学报》2018,67(10):103401-103401
采用量子波包方法和二阶分裂算符方法对H/D+Li_2→LiH/LiD+Li反应在0.01到0.4 eV的碰撞能范围内进行了动力学计算.在态分辨的理论水平上计算了反应概率、积分截面、微分截面等动力学性质并与之前的理论结果进行了比较.结果表明:由于本文的计算中包含了总角动量J在体固定坐标轴上的所有投影所得,结果更加精确;此外,当H原子被重的同位素原子D取代,反应概率、积分截面增大,然而这并没有对反应机理产生大的影响.前后对称的微分截面表明插入反应机理在反应过程中占据主导地位.  相似文献   

17.
The potential energy surfaces (PESs) for several electronic states involved in the reaction O+ (4S) + N2(X1Σ+) → NO+ (X1Σ +, v′) + N(4S) and the role of the ionic N2O+ intermediate have been investigated by ab initio calculations. The 4A″ PES, which correlates with the ground state educts, has a barrier of about 1 eV, and therefore at low collision energies the reaction cannot take place adiabatically on this surface. However, the spin-orbit coupling in the entrance channel allows the system to pass into the Renner-Teller system of the X2 Π electronic ground state of the N2O+ intermediate. The reaction then proceeds on these surfaces up to the region in the exit channel where a similar coupling allows it to reach the product quartet asymptote. At collision energies higher than about 1 eV, the reaction proceeds mainly on the adiabatic PES of the 4A″ state. The A2Σ+ state of N2O+ predissociates via a vibronic coupling with the B2Π state, and in bent structures via a spin-orbit coupling with the 4A″ component of the 4II state. The electronic structure of the B2Π state is found to be of crucial importance for the understanding of the reactive processes in low lying electronic states of N2O+.  相似文献   

18.
Scalar properties and vector correlations of the reactions of O+H 2 →OH+H, O+HD→OH+D, O+DH→OD+H, and O+D 2 →OD+D at collision energies of 25 and 34.6 kcal/mole have been studied via the quasi-classical-trajectory (QCT) method based on a BMS1 potential energy surface (PES). The generalized polarization-dependent differential cross section and the distributions of the dihedral angle at the collision energy of 34.6 kacl/mole are presented. The calculated results indicate that both the reagent rotational angular momentum and the mass factor have a significant influence on the scalar properties and vector correlations of the title reactions.  相似文献   

19.
采用准经典轨线方法[1,2]计算了碰撞能范围为0.6~1.2电子伏时反应He+HD+ (v=1,j=0,1,2,3)→HeH++D和He+HD+ (v=1,j=0,1,2,3)→HeD++H的积分截面.通过跟有效的实验结果对比,发现计算结果略低于实验值,这可能是由于在计算中没有考虑量子效应而导致的.通过准经典轨线的计算结果与Tiwari等人的CS理论计算结果对比发现结果是基本相符合的,尤其是在几个碰撞能下几乎完全吻合.另外通过对比总结分析了V16以及V112势能面在不同的碰撞能以及不同的振转态下与CS理论计算的结果符合情况是的差异.同时重点分析了反应物的振转态对于反应的生成物以及积分截面的影响.  相似文献   

20.
Liu Yu-Fang  Liu Yan-Lei  Liang Bin 《中国物理 B》2012,21(9):98201-098201
Scalar properties and vector correlations of the reactions O+H2 →OH+H, O+HD→OH+D, O+DH→OD+H, and O+D2 →OD+D at collision energies of 25 and 34.6 kcal/mole have been studied via quasi-classical-trajectory (QCT) method based on a BMS1 potential energy surface (PES). Generalized polarization-dependent differential cross section and the distributions of the dihedral angle at the collision energy of 34.6 kacl/mole are presented. The calculated results indicate that both reagent rotational angular momentum and the mass factor have a significant influence on the scalar properties and vector correlations of the title reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号