首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pilot study was carried out to investigate the performance of ultrasound stiffness imaging methods namely Ultrasound Elastography Imaging (UEI) and Acoustic Radiation Force Impulse (ARFI) Imaging. Specifically their potential for characterizing different classes of solid mass lesions was analyzed using agar based tissue mimicking phantoms. Composite tissue mimicking phantom was prepared with embedded inclusions of varying stiffness from 50 kPa to 450 kPa to represent different stages of cancer. Acoustic properties such as sound speed, attenuation coefficient and acoustic impedance were characterized by pulse echo ultrasound test at 5 MHz frequency and they are ranged from (1564 ± 88 to 1671 ± 124 m/s), (0.6915 ± 0.123 to 0.8268 ± 0.755 db cm-1 MHz-1) and (1.61×106 ± 0.127 to 1.76 × 106 ± 0.045 kg m-2 s-1) respectively. The elastic property Young’s Modulus of the prepared samples was measured by conducting quasi static uni axial compression test under a strain rate of 0.5 mm/min upto 10 % strain, and the values are from 50 kPa to 450 kPa for a variation of agar concentration from 1.7% to 6.6% by weight. The composite phantoms were imaged by Siemens Acuson S2000 (Siemens, Erlangen, Germany) machine using linear array transducer 9L4 at 8 MHz frequency; strain and displacement images were collected by UEI and ARFI. Shear wave velocity 4.43 ± 0.35 m/s was also measured for high modulus contrast (18 dB) inclusion and X.XX m/s was found for all other inclusions. The images were pre processed and parameters such as Contrast Transfer Efficiency and lateral image profile were computed and reported. The results indicate that both ARFI and UEI represent the abnormalities better than conventional US B mode imaging whereas UEI enhances the underlying modulus contrast into improved strain contrast. The results are corroborated with literature and also with clinical patient images.  相似文献   

2.
Our objective is to evaluate an ultrasound probe for measurements of velocity and anisotropy in human cortical bone (tibia). The anisotropy of cortical bone is a known and mechanically relevant property in the context of osteoporotic fracture risk. Current in vivo quantitative ultrasound devices measuring the velocity of ultrasound in long bones can only be applied in the axial direction. For anisotropy measurements a second direction for velocity measurements preferably perpendicular to the axial direction is necessary. We developed a new ultrasound probe which permits axial transmission measurements with a simultaneous second perpendicular direction (tangential). Anisotropy measurements were performed on isotropic and anisotropic phantoms and two excised human female tibiae (age 63 and 82). Anisotropy ratios (AI; ratio of squared ultrasound velocities in the two directions) were for the isotropic phantom 1.06 ± 0.01 and for the anisotropic phantom 1.14 ± 0.03 (mean ± standard deviation). AI was 1.83 ± 0.29 in the tibia from the older donor and 1.37 ± 0.18 in the tibia from the younger donor. The AIs were in the expected range and differed significantly (p < 0.05, t-test) between the tibiae. Measured sound velocities were reproducible (mean standard deviation of short time precision of both channels for phantom measurements 31 m/s) and in agreement with reported velocities of the phantom material. Our results document the feasibility of anisotropy measurements at long bones using a single probe. Further improvements in the design of the probe and tests in vivo are warranted. If this approach can be evaluated in vivo an additional tool for assessing the bone status is available for clinical use.  相似文献   

3.
Margi Sasono 《Optik》2010,121(15):1418-1422
We ourselves constructed a portable optical tomography apparatus using near infrared (NIR) laser diode of 904 nm peak spectrum as a light source operating at power 2 mW. For testing, the samples (phantoms) of a cylinder glass and a triangle foam were used. From the scanning process, we successfully carried out the 2D image reconstruction and later it was improved using a filtering process using the back projection method. The images obtained of the phantom and the background were clearly distinguished. The apparatus has advantages of low cost and simplicity of operation and hence has potential use in many lines, e.g. medicine, agriculture.  相似文献   

4.
Ultrasound Nakagami parametric imaging is a useful tool for tissue characterization. Previous literature has suggested using a square with side lengths corresponding to 3 times the transducer pulse length as the minimum window for constructing the Nakagami image. This criterion does not produce sufficiently smooth images for the Nakagami image to characterize homogeneous tissues. To improve image smoothness, we proposed window-modulated compounding (WMC) Nakagami imaging based on summing and averaging the Nakagami images formed using sliding windows with varying window side lengths from 1 to N times the transducer pulse length in 1 pulse length step. Simulations (the number densities of scatterers: 2–16 scatterers/mm2) and experiments on fully developed speckle phantoms (the scatterer diameters: 20–106 μm) were conducted to suggest an appropriate number of frames N and to evaluate the image smoothness and resolution by analyzing the full width at half maximum (FWHM) of the parameter distribution and the widths of the image autocorrelation function (ACF), respectively. In vivo ultrasound measurements on rat livers without and with cirrhosis were performed to validate the practical performance of the WMC Nakagami image in tissue characterization. The simulation results showed that using a range of N from 7 to 10 as the number of frames for image compounding reduces the estimation error to less than 5%. Based on this criterion, the Nakagami parameter obtained from the WMC Nakagami image increased from 0.45 to 0.95 after increasing the number densities of scatterers from 2 to 16 scatterers/mm2. The FWHM of the parameter distribution (bins = 40) was 13.5 ± 1.4 for the Nakagami image and 9.1 ± 1.43 for the WMC Nakagami image, respectively (p-value < .05). The widths of the ACF for the Nakagami and WMC Nakagami images were 454 ± 5.36 and 458 ± 4.33, respectively (p-value > .05). In the phantom experiments, we also found that the FWHM of the parameter distribution for the WMC Nakagami image was smaller than that of the conventional Nakagami image (p-value < .05), and there was no significant difference of the ACF width between the Nakagami and WMC Nakagami images (p-value > .05). In the animal experiments, the Nakagami parameters obtained from the WMC Nakagami image for normal and cirrhotic rat livers were 0.62 ± 0.08 and 0.92 ± 0.07, respectively (p-value < .05). The results demonstrated that the WMC technique significantly improved the image smoothness of Nakagami imaging without resolution degradation, giving Nakagami model-based imaging the ability to visualize scatterer properties with enhanced image quality.  相似文献   

5.
In this work we demonstrate for the first time directly detected manganese-55 (55Mn) magnetic resonance imaging (MRI) using a clinical 3 T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d = 8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~ 60 at 0.5 cm3 spatial resolution, distributed with minimum central signal ~ 40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies.  相似文献   

6.
Cardiac elastography using radiofrequency echo signals can provide improved 2D strain information compared to B-mode image data, provided data are acquired at sufficient frame rates. In this paper, we evaluate ultrasound frame rate requirements for unbiased and robust estimation of tissue displacements and strain. Both tissue-mimicking phantoms under cyclic compressions at rates that mimic the contractions of the heart and in vivo results are presented. Sinusoidal compressions were applied to the phantom at frequencies ranging from 0.5 to 3.5 cycles/sec, with a maximum deformation of 5% of the phantom height. Local displacements and strains were estimated using both a two-step one-dimensional and hybrid two-dimensional cross-correlation method. Accuracy and repeatability of local strains were assessed as a function of the ultrasound frame rate based on signal-to-noise ratio values.The maximum signal-to-noise ratio obtained in a uniformly elastic phantom is 20 dB for both a 1.26 Hz and a 2 Hz compression frequency when the radiofrequency echo acquisition is at least 12 Hz and 20 Hz respectively. However, for compression frequencies of 2.8 Hz and 4 Hz the maximum signal-to-noise ratio obtained is around 16 dB even for a 40 Hz frame rate. Our results indicate that unbiased estimation of displacements and strain require ultrasound frame rates greater than ten times the compression frequency, although a frame rate of about two times the compression frequency is sufficient to estimate the compression frequency imparted to the tissue-mimicking phantom. In vivo results derived from short-axis views of the heart acquired from normal human volunteers also demonstrate this frame rate requirement for elastography.  相似文献   

7.
Accurate intima-media thickness (IMT) measurement of the carotid artery from minimal plaque ultrasound images is a relevant clinical need, since IMT increase is related to the progression of atherosclerosis.In this paper, we describe a novel dual snake-based model for the high-performance carotid IMT measurement, called Carotid Measurement Using Dual Snakes (CMUDS). Snakes (which are deformable contours) adapt to the lumen-intima (LI) and media-adventitia (MA) interfaces, thus enabling the IMT computation as distance between the LI and MA snakes. However, traditional snakes might be unable to maintain a correct distance and in some spatial location along the artery, it might even collapse between them or diverge. The technical improvement of this work is the definition of a dual snake-based constrained system, which prevents the LI and MA snakes from collapsing or bleeding, thus optimizing the IMT estimation.The CMUDS system consists of two parametric models automatically initialized using the far adventitia border which we automatically traced by using a previously developed multi-resolution approach. The dual snakes evolve simultaneously and are constrained by the distances between them, ensuring the regularization of LI/MA topology. We benchmarked our automated CMUDS with the previous conventional semi-automated snake system called Carotid Measurement Using Single Snake (CMUSS).Two independent readers manually traced the LIMA boundaries of a multi-institutional, multi-ethnic, and multi-scanner database of 665 CCA longitudinal 2D images. We evaluated our system performance by comparing it with the gold standard as traced by clinical readers.CMUDS and CMUSS correctly processed 100% of the 665 images. Comparing the performance with respect to the two readers, our automatically measured IMT was on average very close to that of the two readers (IMT measurement biases for CMUSS was equal to −0.011 ± 0.329 mm and −0.045 ± 0.317 mm, respectively, while for CMUDS, it was 0.030 ± 0.284 mm and −0.004 ± 0.273 mm, respectively). The Figure-of-Merit of the system was 98.5% and 94.4% for CMUSS, while 96.0% and 99.6% for CMUDS, respectively. Results showed that the dual-snake system CMUDS reduced the IMT measurement error accuracy (Wilcoxon, p < 0.02) and the IMT error variability (Fisher, p < 3 × 10−2).We propose the CMUDS technique for use in large multi-centric studies, where the need for a standard, accurate, and automated IMT measurement technique is required.  相似文献   

8.
Yoon C  Lee Y  Chang JH  Song TK  Yoo Y 《Ultrasonics》2011,51(7):795-802
Effective receive beamforming in medical ultrasound imaging is important for enhancing spatial and contrast resolution. In current ultrasound receive beamforming, a constant sound speed (e.g., 1540 m/s) is assumed. However, the variations of sound speed in soft tissues could introduce phase distortions, leading to degradation in spatial and contrast resolution. This degradation becomes even more severe in imaging fatty tissues (e.g., breast) and with obese patients. In this paper, a mean sound speed estimation method where phase variance of radio-frequency channel data in the region of interest is evaluated is presented for improving spatial and contrast resolution. The proposed estimation method was validated by the Field II simulation and the tissue mimicking phantom experiments. In the simulation, the sound speed of the medium was set to 1450 m/s and the proposed method was capable of capturing this value correctly. From the phantom experiments, the −18-dB lateral resolution of the point target at 50 mm obtained with the estimated mean sound speed was improved by a factor of 1.3, i.e., from 3.9 mm to 2.9 mm. The proposed estimation method also provides an improvement of 0.4 in the contrast-to-noise ratio, i.e., from 2.4 to 2.8. These results indicate that the proposed mean sound speed estimation method could enhance the spatial and contrast resolution in the medical ultrasound imaging systems.  相似文献   

9.
Omari E  Lee H  Varghese T 《Ultrasonics》2011,51(6):758-767
Quantitative ultrasound features such as the attenuation slope, sound speed and scatterer size, have been utilized to evaluate pathological variations in soft tissues such as the liver and breast. However, the impact of variations in the sound speed and backscatter due to underlying fat content or fibrotic changes, on the attenuation slope has not been addressed. Both numerical and acoustically uniform tissue-mimicking experimental phantoms are used to demonstrate the impact of sound speed variations on attenuation slope using clinical real-time ultrasound scanners equipped with linear array transducers. Radiofrequency data at center frequencies of 4 and 5 MHz are acquired for the experimental and numerical phantoms respectively. Numerical phantom sound speeds between 1480 and 1600 m/s in increments of 20 m/s for attenuation coefficients of 0.3, 0.4, 0.5, 0.6, and 0.7 dB/cm/MHz are simulated. Variations in the attenuation slope when the backscatter intensity of the sample is equal, 3 dB higher, and 3 dB lower than the reference is also evaluated. The sound speed for the experimental tissue-mimicking phantoms were 1500, 1540, 1560 and 1580 m/s respectively, with an attenuation coefficient of 0.5 dB/cm/MHz. Radiofrequency data is processed using three different attenuation estimation algorithms, i.e. the reference phantom, centroid downshift, and a hybrid method. In both numerical and experimental phantoms our results indicate a bias in attenuation slope estimates when the reference phantom sound speed is higher (overestimation) or lower (underestimation) than that of the sample. This bias is introduced via a small spectral shift in the normalized power spectra of the reference and sample with different sound speeds. The hybrid method provides the best estimation performance, especially for sample attenuation coefficient values lower than that of the reference phantom. The performance of all the methods deteriorates when the attenuation coefficient of the reference phantom is lower than that of the sample. In addition, the hybrid method is the least sensitive to sample backscatter intensity variations.  相似文献   

10.
The geometry of carotid artery bifurcation is of high clinical interest because it determines the characteristics of blood flow that is closely related to the formation and development of atherosclerotic plaque. However, information on the dynamic changes in the vessel wall of carotid artery bifurcation during a pulsatile cycle is limited. This pilot study investigated the cyclic changes in carotid artery geometry caused by blood flow pulsation in rats. A high-resolution ultrasound imaging system with a broadband scanhead centered at 40 MHz was used to obtain longitudinal images of the rat carotid artery. A high frame rate retrospective B-scan imaging technique based on the use of electrocardiogram to trigger signal acquisition was used to examine precisely the fast arterial wall motion. Two-dimensional geometry data obtained from nine rats showed that the rat carotid artery asymmetrically contracts and dilates during each cardiac cycle. Systolic/diastolic vessel diameters near the upstream and downstream regions from the bifurcation were 0.976 ± 0.011/0.825 ± 0.015 mm and 0.766 ± 0.015/0.650 ± 0.016 mm, respectively. Their posterior/anterior wall displacement ratios in the radial direction were 41.0 ± 14.9% and 2.9 ± 1.6%, respectively. These results indicate that in the vicinity of bifurcation, the carotid artery favorably expands to the anterior side during the systolic phase. This phenomenon was observed to be more prominent in the downstream region near the bifurcation. The cyclic variation pattern in wall movement varies depending on the measurement site, which shows different patterns at far upstream and downstream of the bifurcation. The asymmetric radial expansion and contraction of the rat carotid artery observed in this study may be useful in studying the hemodynamic etiology of cardiovascular diseases because the pulsatile changes in vessel geometry may affect the local hemodynamics that determines the spatial distribution of wall shear stress, one of important cardiovascular risk factors. Further systematic study is needed to clarify the effects of wall elasticity, branch angle and vessel diameter ratio on the asymmetric wall motion of carotid artery bifurcation.  相似文献   

11.

Purpose

To investigate an effective time-resolved variable-density random undersampling scheme combined with an efficient parallel image reconstruction method for highly accelerated aortic 4D flow MR imaging with high reconstruction accuracy.

Materials and Methods

Variable-density Poisson-disk sampling (vPDS) was applied in both the phase-slice encoding plane and the temporal domain to accelerate the time-resolved 3D Cartesian acquisition of flow imaging. In order to generate an improved initial solution for the iterative self-consistent parallel imaging method (SPIRiT), a sample-selective view sharing reconstruction for time-resolved random undersampling (STIRRUP) was introduced. The performance of different undersampling and image reconstruction schemes were evaluated by retrospectively applying those to fully sampled data sets obtained from three healthy subjects and a flow phantom.

Results

Undersampling pattern based on the combination of time-resolved vPDS, the temporal sharing scheme STIRRUP, and parallel imaging SPIRiT, were able to achieve 6-fold accelerated 4D flow MRI with high accuracy using a small number of coils (N = 5). The normalized root mean square error between aorta flow waveforms obtained with the acceleration method and the fully sampled data in three healthy subjects was 0.04 ± 0.02, and the difference in peak-systolic mean velocity was − 0.29 ± 2.56 cm/s.

Conclusion

Qualitative and quantitative evaluation of our preliminary results demonstrate that time-resolved variable-density random sampling is efficient for highly accelerating 4D flow imaging while maintaining image reconstruction accuracy.  相似文献   

12.

Aims

The objective of this study was to evaluate the potential of 4D flow MRI to assess valve effective orifice area (EOA) in patients with aortic stenosis as determined by the jet shear layer detection (JSLD) method.

Methods and Results

An in-vitro stenosis phantom was used for validation and in-vivo imaging was performed in 10 healthy controls and 40 patients with aortic stenosis. EOA was calculated by the JSLD method using standard 2D phase contrast MRI (PC-MRI) and 4D flow MRI measurements (EOAJSLD-2D and EOAJSLD-4D, respectively). As a reference standard, the continuity equation was used to calculate EOA (EOACE) with the 2D PC-MRI velocity field and compared to the EOAJSLD measurements. The in-vitro results exhibited excellent agreement between flow theory (EOA = 0.78 cm2) and experimental measurement (EOAJSLD-4D = 0.78 ± 0.01 cm2) for peak velocities ranging from 0.9 to 3.7 m/s. In-vivo results showed good correlation and agreement between EOAJSLD-2D and EOACE (r = 0.91, p < 0.001; bias: − 0.01 ± 0.38 cm2; agreement limits: 0.75 to − 0.77 cm2), and between EOAJSLD-4D and EOACE (r = 0.95, p < 0.001; bias: − 0.09 ± 0.26 cm2; limits: 0.43 to − 0.62 cm2).

Conclusion

This study demonstrates the feasibility of measuring EOAJSLD using 4D flow MRI. The technique allows for optimization of the EOA measurement position by visualizing the 3D vena contracta, and avoids potential sources of EOACE measurement variability.  相似文献   

13.
Lung diseases, such as acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), are closely associated with altered lung elastic properties. Pulmonary function testing and imaging are routinely performed for evaluating lung diseases. However, lung compliance, a measure of lung elastic properties, is rarely used in clinic, because it is invasive and provides only a global and arguably biased estimate of lung elastic properties. Current ultrasound methods also cannot be used for imaging lungs because ultrasound cannot penetrate the lung tissue. In this paper, an ultrasound image guided and surface wave based method is proposed to measure regional lung surface wave speed and estimate lung elasticity noninvasively. The method described here was not explored before to the best knowledge of the authors. Experiments in an ex vivo pig lung and an in vivo human lung pilot study are reported. The surface wave speed is measured to be 1.83 ± 0.02 m/s at 100 Hz by ultrasound for the ex vivo pig lung at 3 mmHg pressure, which is validated by an optical measurement. An in vivo human lung pilot experiment measures the surface wave speed to be 2.41 ± 0.33 m/s for the 100 Hz sinusoidal wave at total lung capacity (TLC) and 0.99 ± 0.09 m/s at functional residual capacity (FRC). These values of wave speed fall well within the range of available literature.  相似文献   

14.
Moisturizing creams and lotions are commonly used in daily life for beauty and treatment of different skin conditions such as dryness and wrinkling, and ultrasound stimulation has been used to enhance the delivery of ingredients into skin. However, there is a lack of convenient methods to study the effect of ultrasound stimulation on lotion absorption by skin in vivo. Ultrasound biomicroscopy was adopted as a viable tool in this study to investigate the effectiveness of ultrasound stimulation on the enhancement of lotion delivery into skin. The forearm skin of 10 male and 10 female young subjects was tested at three different sites, including two lotion treatment sites with (Ultrasound Equipment – UE ON) and without (UE OFF) ultrasound stimulation and a control site without any lotion treatment. 1 MHz ultrasound with a duty cycle of 1.7%, a spatial peak temporal peak pressure of 195 kPa and an average power of 0.43 W was used for the stimulation. The skin thickness before, immediately after (0 min), and 15 and 30 min after the treatment was measured by an ultrasound biomicroscopic system (55 MHz). It was found that the skin thickness significantly increased immediately after the lotion treatment for both UE ON (from 1.379 ± 0.187 mm to 1.466 ± 0.182 mm, p < 0.001) and UE OFF (from 1.396 ± 0.193 mm to 1.430 ± 0.194 mm, p < 0.001) groups. Further comparison between the two groups revealed that the skin thickness increase of UE ON group was significantly larger than that of UE OFF group (6.5 ± 2.4% vs. 2.5 ± 1.3%, p < 0.001). Furthermore, it was disclosed that the enhancement of lotion delivery by ultrasound stimulation was more effective for the female subjects than the male subjects (7.6 ± 2.3% vs. 5.4 ± 2.0% immediately after treatment, = 0.017). In conclusion, this study demonstrated that ultrasound biomicroscopy was a feasible method for studying the effectiveness of lotion treatment in vivo, and ultrasound stimulation was effective to enhance the rate of lotion absorption into skin.  相似文献   

15.
The biocompatible trisacryl particles (TMP) are made of a cross-linked acrylic copolymer. Their inherent acoustic properties, studied for a contrast agent application, have been previously demonstrated in a in vitro Couette device. To measure their acoustic behaviour under circulating blood conditions, the TMP backscatter enhancement was further evaluated on a home-made flow phantom at different TMP doses (0.12-15.6 mg/ml) suspended in aqueous and blood media, and in nude mice (aorta and B16 grafted melanoma). Integrated backscatter (IB) was measured by spectral analysis of the Doppler signals recorded from an ultrasound system (Aplio®) combined with a 12-MHz probe. Doppler phantom experiments revealed a maximal IB of 17 ± 0.88 dB and 7.5 ± 0.7 dB in aqueous and blood media, respectively. IB measured on mice aorta, in pulsed Doppler mode, confirmed a constant maximal value of 7.29 ± 1.72 dB over the first minutes after injection of a 7.8 mg/ml TMP suspension. Following the injection, a 60% enhancement of intratumoral vascularization detection was observed in power Doppler mode. A preliminary histological study revealed inert presence of some TMP in lungs 8 and 16 days after injection.Doppler phantom experiments on whole blood allowed to anticipate the in vivo acoustic behaviour. Both protocols demonstrated TMP effectiveness in significantly increasing Doppler signal intensity and intratumoral vascularization detection. However, it was also shown that blood conditions seemed to shadow the TMP contrast effect, as compared to in vitro observations. These results encourage further investigations on the specific TMP targeting and on their bio-distribution in the different tissues.  相似文献   

16.
17O magnetic resonance imaging (MRI) using a conventional pulse sequence was explored as a method of quantitative imaging towards regional oxygen consumption rate measurement for tumor evaluation in mice. At 7 T, fast imaging with steady state (FISP) was the best among gradient echo, fast spin echo and FISP for the purpose. The distribution of natural abundance H217O in mice was visualized under spatial resolution of 2.5 × 2.5 mm2 by FISP in 10 min. The signal intensity by FISP showed a linear relationship with 17O quantity both in phantom and mice. Following the injection of 5% 17O enriched saline, 17O re-distribution was monitored in temporal resolution down to 5 sec with an image quality sufficient to distinguish each organ. The image of labeled water produced from inhaled 17O2 gas was also obtained. The present method provides quantitative 17O images under sufficient temporal and spatial resolution for the evaluation of oxygen consumption rate in each organ. Experiments using various model compounds of R-OH type clarified that the signal contribution of body constituents other than water in the present in vivo17O FISP image was negligible.  相似文献   

17.
The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator has been developed for layered media assuming that, for moderate speed differences, the reflection at the interface may be neglected. We have applied our dual-layer algorithm to simulations and in vitro phantoms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-spread functions having different lower-layer speeds. The best restoration is selected using a correlation metric. The error level (e.g., a mean error of −9 m/s with a standard deviation of 16 m/s) for in vitro phantoms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed estimation methods where the data acquisition may not be as simple as in our proposed method.  相似文献   

18.
In the field of lidar system design, there is a need for laser scanners that offer fast linear scanning, are small size and have small a rotational inertia moment. Currently, laser scanners do not meet the above needs. A new laser scanner based on two amplified piezoelectric actuators is designed in this paper. The laser scanner has small size, high mechanical resonance frequencies and a small rotational inertia moment. The size of the mirror is 20 mm×15 mm. To achieve fast linear scanning performance, an open-loop controller is designed to compensate the hysteresis behavior and to restrain oscillations that are caused by the mechanical resonances of the scanner's mechanical structure. By comparing measured scanning waveforms, nonlinearities and scan line images between the uncontrolled and controlled scanner, it was found that the scanning linearity of linear scanning was improved The open-loop controlled laser scanner realizes linear scanning at 250 Hz with optical scan angle of ±12 mrad.  相似文献   

19.
Kremer F  Choi HF  Claus P  D'hooge J 《Ultrasonics》2012,52(7):936-942
Estimating myocardial strain in the mouse with clinical equipment remains difficult due to the high heart rate and the small size of the mouse heart. Measuring the strain component perpendicular to the ultrasound beam is especially challenging because of the lack of phase information in that direction and the large speckle width compared to the wall thickness. In this study, the performance of a Synthetic Lateral Phase (SLP) approach was contrasted to a standard and a regularized 2D Speckle Tracking (2D ST) algorithm using simulated data sets. SLP yielded higher rms errors for the lateral strain estimates than the regularized 2D ST (Lateral rms error: 0.087 ± 0.012 vs. 0.052 ± 0.010; p < 0.05). No significant difference was found between the standard 2D ST and SLP. For the axial strain estimates, SLP produced higher rms errors than the standard 2D ST (Axial rms error: 0.063 ± 0.012 vs. 0.040 ± 0.008; p < 0.05). 2D ST combined with geometric regularization showed thus to be the most accurate method.  相似文献   

20.

Purpose

To assess the feasibility and to optimize imaging parameters of diffusion kurtosis imaging (DKI) in human kidneys.

Methods

The kidneys of ten healthy volunteers were examined on a clinical 3 T MR scanner. For DKI, respiratory triggered EPI sequences were acquired in the coronal plane (3 b-values: 0, 300, 600 s/mm2, 30 diffusion directions). A goodness of fit analysis was performed and the influence of the signal-to-noise ratio (SNR) on the DKI results was evaluated. Region-of-interest (ROI) measurements were performed to determine apparent diffusion coefficient (ADC), fractional anisotropy (FA) and mean kurtosis (MK) of the cortex and the medulla of the kidneys. Intra-observer and inter-observer reproducibility using Bland-Altman plots as well as subjective image quality of DKI were examined and ADC, FA, and MK parameters were compared.

Results

The DKI model fitted better to the experimental data (r = 0.99) with p < 0.05 than the common mono-exponential ADC model (r = 0.96).Calculation of reliable kurtosis parameters in human kidneys requires a minimum SNR of 8.31 on b = 0 s/mm2 images.Corticomedullary differentiation was possible on FA and MK maps. ADC, FA and MK revealed significant differences in medulla (ADC = 2.82 × 10− 3 mm2/s ± 0.25, FA = 0.42 ± 0. 05, MK = 0.78 ± 0.07) and cortex (ADC = 3.60 × 10− 3 mm2/s ± 0.28, FA = 0.18 ± 0.04, MK = 0.94 ± 0.07) with p < 0.001.

Conclusion

Our initial results indicate the feasibility of DKI in the human kidney presuming an adequate SNR. Future studies in patients with kidney diseases are required to determine the value of DKI for functional kidney imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号