首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3535篇
  免费   88篇
  国内免费   19篇
化学   2178篇
晶体学   33篇
力学   82篇
数学   421篇
物理学   928篇
  2023年   16篇
  2021年   30篇
  2020年   32篇
  2019年   47篇
  2018年   32篇
  2017年   27篇
  2016年   65篇
  2015年   48篇
  2014年   61篇
  2013年   161篇
  2012年   200篇
  2011年   227篇
  2010年   103篇
  2009年   74篇
  2008年   186篇
  2007年   172篇
  2006年   168篇
  2005年   176篇
  2004年   158篇
  2003年   129篇
  2002年   127篇
  2001年   72篇
  2000年   62篇
  1999年   34篇
  1998年   28篇
  1997年   37篇
  1996年   42篇
  1995年   40篇
  1994年   39篇
  1993年   53篇
  1992年   54篇
  1991年   28篇
  1990年   33篇
  1989年   43篇
  1988年   40篇
  1987年   33篇
  1986年   25篇
  1985年   48篇
  1984年   50篇
  1983年   38篇
  1982年   45篇
  1981年   37篇
  1980年   42篇
  1979年   43篇
  1978年   46篇
  1977年   35篇
  1976年   46篇
  1975年   26篇
  1974年   38篇
  1973年   39篇
排序方式: 共有3642条查询结果,搜索用时 20 毫秒
1.
2.
3.
Herein we report the preparation of a series of Ru(II) complexes featuring α-iminopyridine ligands bearing thioether functionality (NNSR, where R = Me, CH2Ph, Ph). Metallation using [(p-cymene)RuCl]2 permits access to Ru complexes with a κ2-N,N donor set in which the thioether moiety remains uncoordinated. In the presence of a strong field ligand such as acetonitrile or triphenylphosphine, the p-cymene moiety is displaced, and the ligand adopts a κ3-N,N,S binding mode. These complexes are characterized using a combination of solution and solid state methods, including the crystal structure of [(NNSMe)Ru (NCMe)2Cl]Cl. The κ2-N,N-Ru(II) complexes are shown to serve as efficient precatalysts for the oxidation of sec-phenethyl alcohol at modest loadings (alcohol: Ru = 20:1), using a variety of external oxidants and solvents. The complex bearing an S-Ph donor was found to be the most active oxidation catalyst of those surveyed, suggesting that the thioether donor plays an active role in the catalytic cycle.  相似文献   
4.
This paper presents a full catalogue, up to conjugacy and subgroups of finite index, of all matrix groups H<GL(3,R) that give rise to a continuous wavelet transform with associated irreducible quasi-regular representation. For each group in this class, coorbit theory allows to consistently define spaces of sparse signals, and to construct atomic decompositions converging simultaneously in a whole range of these spaces. As an application of the classification, we investigate the existence of compactly supported admissible vectors and atoms for the groups.  相似文献   
5.
In this paper, we are interested in the following question: given an arbitrary Steiner triple system on vertices and any 3‐uniform hypertree on vertices, is it necessary that contains as a subgraph provided ? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive.  相似文献   
6.
The mechanism and energetics of CO, 1‐hexene, and 1‐hexyne substitution from the complexes (SBenz)2[Fe2(CO)6] (SBenz=SCH2Ph) ( 1 ‐CO), (SBenz)2[Fe2(CO)52‐1‐hexene)] ( 1 ‐(η2‐1‐hexene)), and (SBenz)2[Fe2(CO)52‐1‐hexyne)] ( 1 ‐(η2‐1‐hexyne)) were studied by using time‐resolved infrared spectroscopy. Exchange of both CO and 1‐hexyne by P(OEt)3 and pyridine, respectively, proceeds by a bimolecular mechanism. As similar activation enthalpies are obtained for both reactions, the rate‐determining step in both cases is assumed to be the rotation of the Fe(CO)2L (L=CO or 1‐hexyne) unit to accommodate the incoming ligand. The kinetic profile for the displacement of 1‐hexene is quite different than that for the alkyne and, in this case, both reaction channels, that is, dissociative (SN1) and associative (SN2), were found to be competitive. Because DFT calculations predict similar binding enthalpies of alkene and alkyne to the iron center, the results indicate that the bimolecular pathway in the case of the alkyne is lower in free energy than that of the alkene. In complexes of this type, subtle changes in the departing ligand characteristics and the nature of the mercapto bridge can influence the exchange mechanism, such that more than one reaction pathway is available for ligand substitution. The difference between this and the analogous study of (μ‐pdt)[Fe(CO)3]2 (pdt=S(CH2)3S) underscores the unique characteristics of a three‐atom S?S linker in the active site of diiron hydrogenases.  相似文献   
7.
After publication of karlotoxin 2 (KmTx2; 1 ), the harmful algal bloom dinoflagellate Karlodinium sp. was collected and scrutinized to identify additional biologically active complex polyketides. The structure of 1 was validated and revised at C49 using computational NMR tools including J‐based configurational analysis and chemical‐shift calculations. The characterization of two new compounds [KmTx8 ( 2 ) and KmTx9 ( 3 )] was achieved through overlaid 2D HSQC NMR techniques, while the relative configurations were determined by comparison to 1 and computational chemical‐shift calculations. The detailed evaluation of 2 using the NCI‐60 cell lines, NMR binding studies, and an assessment of the literature supports a mode of action (MoA) for targeting cancer‐cell membranes, especially of cytostatic tumors. This MoA is uniquely different from that of current agents employed in the control of cancers for which 2 shows sensitivity.  相似文献   
8.
In this study we synthesized and characterized mirror image barnase (B. amyloliquefaciens ribonuclease). d-Barnase was identical to l-barnase, when analyzed by liquid chromatography and mass-spectrometry. Proteolysis of the mirror image enzyme revealed that in contrast to its native counterpart, d-barnase was completely stable to digestive proteases. In enzymatic assays, d-barnase had the reciprocal chiral specificity and was fully active towards mirror image substrates. Interestingly, d-barnase also hydrolyzed the substrate of the native chirality, albeit 4000 times less efficiently. This effect was further confirmed by digesting a native 112-mer RNA with the enzyme. Additional studies revealed that barnase accommodates a range of substrates with various chiralities, but the prime requirement for guanosine remains. These studies point toward using mirror image enzymes as modern agents in biotechnology.  相似文献   
9.
In this paper we extend a central limit theorem of Peligrad for uniformly strong mixing random fields satisfying the Lindeberg condition in the absence of stationarity property. More precisely, we study the asymptotic normality of the partial sums of uniformly \(\alpha \)-mixing non-stationary random fields satisfying the Lindeberg condition, in the presence of an extra dependence assumption involving maximal correlations.  相似文献   
10.
This work demonstrates the dominance of a Ni(0/II/III) cycle for Ni-photoredox amide arylation, which contrasts with other Ni-photoredox C-heteroatom couplings that operate via Ni(I/III) self-sustained cycles. The kinetic data gathered when using different Ni precatalysts supports an initial Ni(0)-mediated oxidative addition into the aryl bromide. Using NiCl2 as the precatalyst resulted in an observable induction period, which was found to arise from a photochemical activation event to generate Ni(0) and to be prolonged by unproductive comproportionation between the Ni(II) precatalyst and the in situ generated Ni(0) active species. Ligand exchange after oxidative addition yields a Ni(II) aryl amido complex, which was identified as the catalyst resting state for the reaction. Stoichiometric experiments showed that oxidation of this Ni(II) aryl amido intermediate was required to yield functionalized amide products. The kinetic data presented supports a rate-limiting photochemically-mediated Ni(II/III) oxidation to enable C−N reductive elimination. An alternative Ni(I/III) self-sustained manifold was discarded based on EPR and kinetic measurements. The mechanistic insights uncovered herein will inform the community on how subtle changes in Ni-photoredox reaction conditions may impact the reaction pathway, and have enabled us to include aryl chlorides as coupling partners and to reduce the Ni loading by 20-fold without any reactivity loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号