首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 336 毫秒
1.
对45℃时的氯乙烯/邻苯二甲酸二烯丙基酯(VC/DAP)的悬浮共聚进行了研究,得到表观竞聚率rVC=0769、rDAP=0374.凝胶点对应的DAP临界起始浓度在0466~0493mmol/molVC之间(聚合转化率为80~85%),当DAP起始浓度小于临界浓度时,VC/DAP共聚物均为溶胶,溶胶平均聚合度随DAP起始浓度和聚合转化率的提高而增大;当DAP起始浓度大于临界浓度时,共聚物由溶胶和凝胶组成,凝胶含量随DAP浓度和聚合转化率的提高而增加,溶胶聚合度则随DAP浓度的提高而减小.在凝胶点前,共聚物的分子量分布随DAP浓度的增加而变宽;凝胶点以后,分子量分布随DAP浓度的增加而变窄.  相似文献   

2.
将Ag/AgCl电极于溶胶-凝胶溶液中反复浸3次以上,在室温静置48 h后在1.0×10-2mol.L-1辛可宁溶液中活化至少12 h即制成新型的辛可宁选择性电极。溶胶-凝胶溶液系将正硅酸乙酯、无水乙醇及0.1 mol.L-1盐酸按一定比例混合后加适量的硅钨酸作为活性物质,搅拌30 min混匀后在室温放置24 h配成。辛可宁电极在pH 6.0~7.0,辛可宁浓度在1.0×10-1~1.0×10-5mol.L-1范围内显示Nernst响应,平均斜率为57 mV/pc,检出限为8.0×10-6mol.L-1。  相似文献   

3.
研究了稳定自由基存在下苯乙烯的活性聚合 .发现在 2 ,2′ 联吡啶的存在下 ,苯乙烯聚合的分子量控制效果提高 ,分子量可控 ,分子量分布较窄 .在与丙二腈共同作用时 ,可在 4h内达到 85 %的转化率 ,分子量分布在 1 5以下 ,分子量控制误差在 2 0 %以下 .设计分子量在 1× 10 4 ~ 9× 10 4 的范围内 ,实测分子量和理论分子量相近 .  相似文献   

4.
为研究弱凝胶的形成过程,并把高分子弱凝胶用于三次采油,采用三维Monte Carlo模拟了高分子溶液凝胶化过程. 模拟预测了凝胶化开始的时间,得到了凝胶化过程中分子量分布的演化规律和胶团生长的三维图像. 发现生成溶胶与凝胶团的歧化过程,初始聚合物的浓度对能否形成凝胶至关重要,低于临界浓度不能形成凝胶. 模拟了凝胶化速度和聚合物浓度以及交联剂浓度的关系,并与粘度随凝胶化时间变化的实验结果进行比较, 结果表明, 聚合物浓度较高时,浓度对交联反应的影响减弱,这一趋势与实验结果相一致.  相似文献   

5.
用溶胶-凝胶包埋硝酸银制备了碘离子选择性电极.电极对I-离子在10-1~10-7mol/L浓度范围内呈Nernst响应,斜率为58.321 mV/pI-,检测下限为4.6×10-8mol/L,回收率为97.4%~103.2%.  相似文献   

6.
先用五甲基茂基三苄氧基钛 /甲基铝氧烷催化苯乙烯预聚 ,再与丁二烯进行嵌段共聚合。考察预聚时间、催化剂浓度、苯乙烯浓度等条件对嵌段共聚合反应的影响。共聚产物经沸丁酮、沸甲苯、沸四氢呋喃、沸氯仿连续抽提后 ,嵌段共聚物主要存在于氯仿的可溶级分中。随着预聚时间的增加 ,共聚反应催化效率增加 ,共聚产物中丁二烯含量下降 ;随着催化剂浓度增加 ,共聚催化效率增加 ,[Ti]为 2 .0× 1 0 -4 mol/L时 ,共聚活性达到最大值 ( 1 7.78× 1 0 3 gP/gTi) ,随着催化剂浓度进一步增加 ,共聚催化效率下降 ,共聚产物中丁二烯含量变化亦存在峰值。  相似文献   

7.
应用稀土化合物:环烷酸钕Nd(naph)_3和二(2-乙基己基)磷酸钕Nd·(P_(204)_3分别与三异丁基铝Al(i-Bu)_3组成络合催化剂引发苯乙烯均聚及其与二乙烯苯共聚。适宜的聚合温度为50℃:[Nd]=3×10~(-5)mol/ml;[M]=3×10~(-3)mol/ml;Al/Nd=10(摩尔比),并且催化剂按以下次序配制:钕化合物→溶剂→苯乙烯→三异丁基铝,苯乙烯的转化率在90%以上。溶剂种类及聚合条件不同,制得的聚苯乙烯可为白色或黄色粉末状无定形聚合物,分子量几百至上万。聚合体系中添加PeCl_3能抑制黄色产生。在共聚反应中,二乙烯苯比苯乙烯显示较高的反应活性。  相似文献   

8.
Monte Carlo方法研究苯乙烯/二乙烯苯凝胶化反应   总被引:1,自引:0,他引:1  
在前文基础上,对苯乙烯-二乙烯苯凝胶化反应进行更进一步的Monte Carlo模拟。由于引入了标识符,用三维模型很好地获得了定量表征凝胶化反应的参数:转化率,交联点,分子链数目,重均分子量Mw及数均分子量Mn等的变化规律,得到了与实验基本一致的结果。  相似文献   

9.
采用溶胶-凝胶方法合成系列新型氧化物 Ce6- x Sm x MoO15- δ (0≤x≤1.2). 通过TG-DTA, XRD和XPS等手段对氧化物结构进行了表征. 结果表明, 氧化物的最低成相温度为400 ℃, 具有立方莹石结构. Sm的掺杂可增加氧离子空位浓度, 改善母体电导率. 阻抗谱表明, 采用溶胶-凝胶法合成固体电解质可减少或消除其晶界电阻. 800 ℃时, Ce5.2Sm0.8MoO15- δ的电导率高达6.67×10-3 S/cm.  相似文献   

10.
研制了一种用溶胶 凝胶技术包埋电活性物质的银离子选择电极。研究了包埋过程的变量参数及电极的响应机理。电极Nernst响应范围为 1.0× 10 - 1~ 1.0× 10 - 5mol·L- 1,斜率为5 5 .5mV·pc- 1,检出限为 3.1× 10 - 6mol·L- 1。该电极响应快 ,体积小 ,制作简单 ,使用方便 ,具有坚固耐磨 ,可在严酷条件下使用的特点。此研究对进一步研制溶胶 凝胶ISFET化学传感器和生物传感器具有探索意义  相似文献   

11.
化学交联聚氯乙烯树脂的合成和结构   总被引:2,自引:0,他引:2  
研究了氯乙烯/交联单体悬浮共聚时,交联单体种类、浓度和聚合温度对化学交联聚氯乙烯树脂结构的影响.对于氯乙烯/邻苯二甲酸二烯丙基酯(VC/DAP)悬浮共聚体系,凝胶含量和凝胶交联密度随DAP起始浓度的增加而增大;DAP浓度相同时,凝胶含量和凝胶交联密度随聚合温度上升而下降;当凝胶含量较高时,分子链物理缠结对凝胶交联密度有较大贡献,凝胶交联密度随凝胶含量增加而快速上升.在相同交联单体浓度下,氯乙烯/马来酸二烯丙基酯(VC/DAM)共聚物的凝胶含量最大,VC/DAP共聚物次之,氯乙烯/乙二醇二甲基丙烯酸酯(VC/EGDMA)共聚物最小,这是由于DAM单体的竞聚率小于1,且含有马来酸双键,EGDMA单体的竞聚率远大于1.  相似文献   

12.
RAFT聚合合成高分子量嵌段聚合物   总被引:1,自引:0,他引:1  
以合成高分子量聚合物为目标,以苯基二硫代乙酸-1-苯基乙酯(PEPDTA)作为RAFT试剂,研究引发剂的种类(偶氮二异丁腈(AIBN)、1-1′-偶氮环己腈(ACC))、用量及聚合温度对苯乙烯/丙烯酸丁酯RAFT共聚合过程和聚合物结构的影响.结果发现,由于体系中RAFT浓度很低,相应的引发剂浓度要比传统自由基聚合低得多,只有采用较高的聚合温度和低分解速率常数的引发剂(ACC),才能制得无活性聚合物分率低(<0.1)、分子量高的聚合物,并进一步得到杂质含量少、分子量分布窄的嵌段聚合物.  相似文献   

13.
李永胜  李弘  何炳林 《化学学报》2002,60(8):1485-1489
首次报道以自制氯乙酸降冰片烯甲酯(NMCA)为引发剂的苯乙烯、甲基丙烯酸 甲酯的原子转移自由基(ATRP)本体聚合。详细考察了单体转化与反应时间、产物 分子量及分子量分布间的关系。研究发现,此引发引发甲基丙烯酸甲酯ATRP反应所 得聚合物的分子量分布较宽(PDI = 1.80~2.45),且实测值(GPC)与理论值偏差 较大。而NMCA引发的苯乙烯的ATRP反应可得分子量分布较窄(PDI = 1.54)、实验 值(GPC)与理论值基本吻合的产物。单体转化率随反应时间的变化及产物分子量 随单体转化率变化研究证明这一聚合反应具有活性聚合反应特征。产物的NMR分析 证明所合成产物分子中降冰片烯环上双键未参与聚合反应。  相似文献   

14.
通过多个宽分布聚对二炔苯试样的凝胶渗透色谱(GPC)和特性粘数([η])的测定,应用普适校正原理和Weis方法,确定了该聚合物在四氢呋喃溶液中25℃下的Mark Houwink方程参数:K=762×10-3,α=026.将这一结果运用到GPC谱图的计算,所得[η]与用粘度法实测值比较,所得Mn与用VPO法实测值比较,相对误差6%左右.还研究了聚合反应条件对聚对二炔苯分子量与分子量分布的影响,发现随着聚合时间的延长和聚合温度的升高,聚合物分子链间发生部分交联反应,支化程度加重.聚合过程中还可能存在向单体的链转移反应.  相似文献   

15.
以丁基锂为引发剂、四氢呋喃为溶剂 ,在氮气气氛和 - 78℃下进行苯乙烯 (ST)阴离子聚合 ,并加入 3 溴噻吩作为终止剂 ,从而合成出末端含噻吩基的聚苯乙烯 (PST Thp) ,它可以进行氧化偶联聚合 ,是一类新的大分子单体 .在无水三氯化铁作用下 ,PST Thp可以进行均聚反应或与噻吩进行共聚反应 ,共聚反应生成主链刚性、支链分子量分布窄的聚 (噻吩 接枝 苯乙烯 ) (PThp g ST) ,凝胶渗透色谱、红外光谱和吸收光谱证实接枝共聚物的生成  相似文献   

16.
超高分子量聚苯乙烯的合成和聚合反应动力学   总被引:6,自引:0,他引:6  
杯芳烃钕与Mg(n Bu) 2 、HMPA所组成的三元络合催化剂用于苯乙烯配位聚合能以高收率制得超高分子量聚苯乙烯 .以甲苯为溶剂 ,在一定条件下制成三元配位催化剂 ,当 [Nd]=8× 10 - 4mol L ,[St]=4 .0mol L ,Mg Nd =2 0 .0 (摩尔比 ) ,HMPA Mg =1.0 (摩尔比 ) ,5 0℃聚合 4 5min ,聚合转化率可达到 80 %左右 .所得聚苯乙烯的重均分子量高达 2 10× 10 4 ,分子量分布指数为 1.6 1.间规聚苯乙烯含量为 81% .动力学研究表明 ,聚合反应速率与单体和主催化剂 杯 [6 ]芳烃钕的浓度分别呈 1次方关系 ,聚合反应的表观活化能为 4 1.7kJ mol  相似文献   

17.
一种大分子引发剂的引发作用研究   总被引:1,自引:1,他引:0  
将溶液聚合合成的α-甲基苯乙烯(AMS)和甲基丙烯酸缩水甘油酯(GMA)的低相对分子质量共聚物(计为PAG)作为大分子引发剂,分别研究了PAG引发单体甲基丙烯酸甲酯(MMA)和苯乙烯(St)的本体聚合反应,采用GPC和FTIR等手段对聚合产物进行了表征.研究结果表明,在加热到一定温度时,PAG具有引发作用,可以引发MMA和St进行本体聚合反应;聚合产物具有再引发功能,且其分子量与聚合物产率和聚合反应时间之间均有较好的线性关系.  相似文献   

18.
采用Z基团为—CH2C6H5的RAFT试剂为链转移剂,AIBN为引发剂,60℃下进行甲基丙烯酸甲酯/丙烯酸丁酯(MMA/BA)的本体RAFT共聚合,并用GPC法测算不同单体组成下低聚物RAFT的链转移常数(Ctr).实验表明,对BA的均聚合,Ctr高达116,但对MMA的均聚合,Ctr约为0.1.在共聚体系中,Ctr与fMMA之间为非线性关系,随着fMMA的增加呈下降趋势.Ctr随单体组成的变化规律可以很好地解释不同单体组成下RAFT共聚合中分子量及其分布随转化率变化的规律.  相似文献   

19.
以正丁基锂(n-BuLi)为引发剂,环已烷为溶剂,通过添加十二烷基苯磺酸钡/四氢呋喃(SDBB/THF),对苯乙烯负离子聚合进行了研究.该体系可在60℃聚合得到立构规整性聚苯乙烯,其丁酮不溶物含量可达80%左右.13C-NMR表征结果显示其微观序列组成以等规结构为主,三元组mm和等规五元组mmmm含量可达57%和45%;DSC谱图中不仅有聚苯乙烯玻璃化温度(100℃),而且在211℃有一熔融峰.GPC结果表明,实测分子量与设计分子量差别较大,且分子量分布较宽。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号