首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a detailed analysis of the dependence of degree of strain relaxation of the self-organized InAs/GaAs quantum dot on the geometrical parameters. Differently shaped quantum dots arranged with different transverse periods are simulated in this analysis. It investigates the total residual strain energy that stored in the quantum dot and the substrate for all kinds of quantum dots with the same volume, as well as the dependence on both the aspect ratio and transverse period. The calculated results show that when the transverse period is larger than two times the base of the quantum dots, the influence of transverse periods can be ignored. The larger aspect ratio will lead more efficient strain relaxation. The larger angle between the faces and the substrate will lead more efficient strain relaxation. The obtained results can help to understand the shape transition mechanism during the epitaxial growth from the viewpoint of energy, because the strain relaxation is the main driving force of the quantum dot's self-organization.  相似文献   

2.
Self-assembled GaAs/AlGaAs quantum dot pairs (QDPs) are grown by molecular beam epitaxy using high temperature droplet epitaxy technique. A typical QDP consists of dual-size quantum dots as observed based on atomic force microscopy image. The average height of quantum dot is 5.7 nm for the large quantum dots and 4.6 nm for the small ones. The average peak-to-peak distance of the two dots is about 75 nm. The optical properties of GaAs QDPs are studied by measuring excitation power-dependent and temperature-dependent photoluminescence. Unique photoluminescence properties have been observed from both excitation power-dependent and temperature-dependent measurements. Excitation power-dependent as well as temperature-dependent PL measurements have suggested lateral exciton transfer in the QDPs.  相似文献   

3.
郭汝海  时红艳  孙秀冬 《中国物理》2004,13(12):2141-2146
The quantum confined Stark effect (QCSE) of the self-assembled InAs/GaAs quantum dots has been investigated theoretically. The ground-state transition energies for quantum dots in the shape of a cube, pyramid or “truncated pyramid” are calculated and analysed. We use a method based on the Green function technique for calculating thestrain in quantum dots and an efficient plane-wave envelope-function technique to determine the ground-state electronic structure of them with different shapes. The symmetry of quantum dots is broken by the effect of strain. So the properties of carriers show different behaviours from the traditional quantum device. Based on these results, we also calculate permanent built-in dipole moments and compare them with recent experimental data. Our results demonstrate that the measured Stark effect in self-assembled InAs/GaAs quantum dot structures can be explained by including linear grading.  相似文献   

4.
We present a cross-sectional scanning tunneling microscopy (X-STM) investigation of InAs quantum dots in a GaAs matrix. The structures were grown by molecular beam epitaxy (MBE) at a low growth rate of 0.01 ML/s and consist of five layers of uncoupled quantum dot structures. Detailed STM images with atomic resolution show that the dots consist of an InGaAs alloy and that the indium content in the dot increases towards the top. The analysis of the height versus base-length relation obtained from cross-sectional images of the dots shows that the shape of the dots resembles that of a truncated pyramid and that the square base is oriented along the [010] and [100] directions. Using scanning tunneling spectroscopy (STS) we determined the onset for electron tunneling into the conduction and out of the valence band, both in the quantum dots and in the surrounding GaAs matrix. We found equal voltages for tunneling out of the valence band in GaAs or InGaAs whereas tunneling into GaAs occurred at higher voltages than in InGaAs.  相似文献   

5.
The experimental results of a photoluminescence kinetics study of InAs/GaAs structures with quantum dots grown by metal-organic vapor-phase epitaxy are shown. The measurements have revealed the fast capture of excited carriers from the GaAs barrier to quantum dots and slow interlevel relaxation inside the quantum dots.  相似文献   

6.
We report on calculation of binding energies of excitons as well as positively and negatively charged excitons and biexcitons in type-II quantum dots. The shape of the GaSb/GaAs quantum dot is assumed lens-like and the energies are calculated within the Hartree–Fock approximation. A large enhancement of the binding energies has been estimated in comparison with the type-I quantum dots (InAs/GaAs) which is in good agreement with the recent experimental findings.  相似文献   

7.
The results of a study into the photoluminescence spectra of a set of quantum dots based on GaAs enclosed in AlGaAs nanowires are presented. The steady state and time resolved spectra of photoluminescence under optical excitation both from an array of quantum wires/dots and a single quantum wire/dot have been measured. In the photoluminescence spectra of single quantum dots, emission lines of excitons, biexcitons and tritons have been found. The binding energy of the biexciton in the studied structures was deduced to be 8 meV.  相似文献   

8.
An array of non-overgrown InAs/GaAs quantum dots has been decorated with adsorbed metal atoms in situ in ultrahigh vacuum. Their electron and photoemission properties have been studied. The radical modification of the spectra of the threshold emission from the quantum dots with increasing cesium coating has been found. Two photoemission channels have been established; they are characterized by considerably different intensities, spectral locations, and widths of the selective bands. It has been shown that the decoration of the quantum dots makes it possible to control the electronic structure and quantum yield of photoemission, the nature of which is related to the excitation of the electronic states of the GaAs substrate and InAs/GaAs quantum dots.  相似文献   

9.
Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined.  相似文献   

10.
具有InAlAs浸润层的InGaAs量子点的制备和特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用自组装方法生长了一种新型的InGaAs量子点/InAlAs浸润层结构.通过选取合适的In组分 ,使InAlAs浸润层的能级与GaAs势垒相当,从而使浸润层的量子阱特征消失.通过低温光致 发光(PL)谱的测试分析得到InGaAs量子点/InAlAs浸润层在样品中的确切位置.变温PL谱的 研究显示,具有这种结构的量子点发光峰的半高全宽随温度上升出现展宽,这明显区别于普 通InGaAs量子点半高全宽变窄的行为.这是因为采用了InAlAs浸润层后,不仅增强了对InGaA s量子点的限制作用,同时切断了载流子的 关键词: InGaAs量子点 InAlAs浸润层 PL谱  相似文献   

11.
We present an optical study of two closely stacked self-assembled InAs/GaAs quantum dots. The energy spectrum and correlations between photons subsequently emitted from a single pair provide not only clear evidence of coupling between the quantum dots but also insight into the coupling mechanism. Our results are in agreement with recent theories predicting that tunneling is largely suppressed between nonidentical quantum dots and that the interaction is instead dominated by dipole-dipole coupling and phonon-assisted energy transfer processes.  相似文献   

12.
Electron and hole effective masses in self-assembled InAs/GaAs quantum dots are determined by fitting the energy levels calculated by a single-band model to those obtained by a more sophisticated tight-binding method. For the dots of various shapes and dimensions, the electron effective-mass is found to be much larger than that in the bulk and become anisotropic in the dots of large aspect ratio while the hole effective-mass becomes almost isotropic in the dots of small aspect ratio. For flat InAs/GaAs quantum dots, the most appropriate value for the electron and hole effective-mass is believed to be the electron effective-mass in bulk GaAs and the vertical heavy-hole effective-mass in bulk InAs, respectively.  相似文献   

13.
We have investigated magneto-optical properties of GaSb/GaAs self-assemble type II quantum dots by single dot spectroscopy in magnetic field. We have observed clear Zeeman splitting and diamagnetic shift of GaSb/GaAs quantum dots. The diamagnetic coefficient ranges from 5 to 30 μeV/T2. The large coefficient and their large distribution are attributed to the size inhomogeneity and electron localization outside the dot. The g-factor of GaSb/GaAs quantum dots is slightly larger than that of similar type I InGaAs/GaAs quantum dots. In addition, we find almost linear relationship between the diamagnetic coefficient and the g-factor. The linear increase of g-factor with diamagnetic coefficient is due to an increase of spin-orbit interaction with dot size.  相似文献   

14.
赵继刚  邵彬  王太宏 《物理学报》2002,51(6):1355-1359
分析研究了GaAsInAs自组装量子点的电输运性质,通过对实验数据的分析,讨论了Schottky势垒对InAs量子点器件的影响和IV曲线中迟滞回路以及电导曲线中台阶结构产生的原因.迟滞回路和台阶的出现与电场中量子点的充放电过程相关:迟滞回路反映了量子点充电后对载流子的库仑作用,而电导台阶则反映了量子点因共振隧穿的放电现象 关键词: 迟滞现象 自组装量子点 共振隧穿  相似文献   

15.
Photoluminescence, capacitance-voltage and transmission electron microscopy studies have been carried out on structures containing a sheet of a self-assembled InAs quantum dots formed in GaAs matrices after the deposition of a 1.7 ML of InAs at 480°C. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the capacitance-voltage technique. From analysis of photoluminescence and capacitance-voltage measurements it follows that the quantum dots have electron levels 80 meV below the bottom of the GaAs conduction band and two heavy-hole levels at 100 meV and 170 meV above the top of the GaAs valence band.  相似文献   

16.
The polarization dependence of beat structure in spectrally resolved four-wave mixing was investigated on 50 Å GaAs multiple quantum wells. Under crosslinear polarization we observed a beating structure at higher energy region of the main spectral peak due to biexciton–exciton transition. The beat has a period of 0.95 ps and is constructive at delay time T=0 ps, which suggests the corresponding double Feynman diagrams to be of the same type. By shortening the central wavelength of the sub-ps laser, we observed the distinctive peak corresponding to the beat period. Even in GaAs system, which is generally believed to have a small biexcitonic effect, there are two effective 2-exciton states with well-defined energies which are required to describe the third-order optical nonlinearly.  相似文献   

17.
Smirl AL  Chen X  Buccafusca O 《Optics letters》1998,23(14):1120-1122
Dual-channel spectral interferometry is used to measure the ellipticity, the orientation of the polarization ellipse, and the sense of rotation of the four-wave-mixing signal from a GaAs-AlGaAs multiple quantum well. Each parameter is observed to oscillate dramatically at the heavy-hole-light-hole quantum beat frequency. During each beat period (in the strong quantum beat regime), the ellipticity oscillates twice between linear and almost-circular polarization, the orientation of the polarization ellipse rotates through a complete 180 degrees , and the sense of rotation changes from left- to right-circular polarization.  相似文献   

18.
The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically.  相似文献   

19.
We report on a new approach for positioning of self-assembled InAs quantum dots on (1 1 0) GaAs with nanometer precision. By combining self-assembly of quantum dots with molecular beam epitaxy on in situ cleaved surfaces (cleaved-edge overgrowth) we have successfully fabricated arrays of long-range ordered InAs quantum dots. Both atomic force microscopy and micro-photoluminescence measurements demonstrate the ability to control position and ordering of the quantum dots with epitaxial precision as well as size and size homogeneity. Furthermore, photoluminescence investigations on dot ensembles and on single dots confirm the high homogeneity and the excellent optical quality of the quantum dots fabricated.  相似文献   

20.
By means of an original all-optical experimental technique using microphotoluminescence in a waveguiding geometry, resonant coherent manipulation of quantum states in a single quantum dot becomes possible now. Resonant Rabi oscillation of the fundamental exciton state in a single quantum dot has been realized. We present the results obtained on two different kinds of samples: InAs/GaAs self-assembled quantum dots and naturally formed GaAs quantum dots by thickness fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号