首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the effective-mass approximation, we have calculated the donor binding energy of a hydrogenic impurity in zinc-blende (ZB) GaN/AlN coupled quantum dots (QDs) using a variational method. Numerical results show that the donor binding energy is highly dependent on the impurity position and coupled QDs structural parameters. The donor binding energy is largest when the impurity is located at the center of quantum dot. When the impurity is located at the interdot barrier edge, the donor binding energy has a minimum value with increasing the interdot barrier width.  相似文献   

2.
The present study seeks to scrutinize the effect of polarization charges on the electronic properties of double ellipsoidal quantum dots. In this regard, the effective-mass approximation within a variational scheme is used and the binding energy of hydrogenic impurity located at the center of ellipsoidal quantum dot (EQD) is calculated for GaAs/GaAlAs/AlAs structure. The effect of surface polarization charges due to impurity and self-polarization charges on the binding energy is considered. The results showed that the binding energy depends not only on the thickness of the intermediate layer but also on the ellipticity constant.  相似文献   

3.
The ground-state binding energy of a hydrogenic donor impurity in wurtzite (WZ) GaN/AlGaN coupled quantum dots (QDs) is calculated by means of a variational method, considering the strong built-in electric fields caused by the piezoelectricity and spontaneous polarizations. The strong built-in electric fields induce an asymmetrical distribution of the ground-state binding energy with respect to the center of the coupled QDs. If the impurity is located at the low dot, the ground-state binding energy is insensitive to the interdot barrier width of WZ GaN/AlGaN coupled QDs.  相似文献   

4.
The binding energies of the hydrogenic impurity in wurtzite InGaN coupled quantum dots (QDs) are calculated by means of a variational method, considering the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Numerical results show that the strong built-in electric field induces an asymmetrical distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located in the center of the left dot, the donor binding energy is largest and insensitive to the barrier height of the wurtzite InGaN coupled QDs.  相似文献   

5.
Based on the effective-mass approximation, the donor binding energy in a cylindrical zinc-blende (ZB) symmetric InGaN/GaN coupled quantum dots (QDs) is investigated variationally in the presence of an applied electric field. Numerical results show that the ground-state donor binding energy is highly dependent on the impurity positions, coupled QDs structure parameters and applied electric field. The applied electric field induces an asymmetric distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located at the center of the right dot, the donor binding energy has a maximum value with increasing the dot height. Moreover, the donor binding energy is the largest and insensitive to the large applied electric field (F?400 kV/cm) when the impurity is located at the center of the right dot in ZB symmetric In0.1Ga0.9N/GaN coupled QDs. In addition, if the impurity is located inside the right dot, the donor binding energy is insensitive to large middle barrier width (Lmb?2.5 nm) of ZB symmetric In0.1Ga0.9N/GaN coupled QDs.  相似文献   

6.
The binding energy of a hydrogenic donor impurity in a wurtzite (WZ) GaN/AlGaN quantum dot (QD) is investigated, including the strong built-in electric field effect due to the spontaneous and piezoelectric polarizations. Numerical results show that the strong built-in electric field induces an asymmetrical distribution of the donor binding energy with respect to the center of the QD. The donor binding energy is insensitive to dot height when the impurity is located at the right boundary of the QD with large dot height.  相似文献   

7.
Within the framework of effective-mass approximation, the binding energy of a hydrogenic donor impurity in a zinc-blende (ZB) InGaN/GaN cylindrical quantum dot (QD) is investigated using a variational procedure. Numerical results show that the donor binding energy is highly dependent on impurity position and QD size. The donor binding energy Eb is largest when the impurity is located at the center of the QD. The donor binding energy is decreased when the dot height (radius) is increased.  相似文献   

8.
Based on the effective-mass approximation, the hydrostatic pressure effects on the donor binding energy of the hydrogenic impurity in zinc-blende (ZB) InGaN/GaN quantum dot (QD) are investigated by means of a variational procedure. Numerical results show that the donor binding energy increases when the hydrostatic pressure increases for any impurity position and QD structure parameter. Moreover, it is found that the hydrostatic pressure has a remarkable influence on the donor binding energy of the hydrogenic impurity located at the vicinity of dot center in ZB InGaN/GaN QD.  相似文献   

9.
纤锌矿GaN柱形量子点中类氢施主杂质态   总被引:4,自引:3,他引:1       下载免费PDF全文
在有效质量近似和变分原理的基础上,选取含两个变分参数的波函数,研究了纤锌矿结构的GaN/AlxGa1-xN单量子点中类氢施主杂质体系的结合能随量子点(QD)尺寸以及杂质在量子点中位置的变化,并与以前使用不同尝试波函数的计算结果进行了比较。结果表明:由我们选取的两变分参数波函数得到的结果与前人选取的两变分参数波函数得到的结果相比有所改进,而与选取一个变分参数波函数得到的结果一致。同时我们还计算了体系的维里定理值随量子点半径的变化情况,所得结果与前人工作结果一致,说明本文选取的两变分参数波函数能很好地描述柱形量子点中施主杂质态的运动。  相似文献   

10.
The binding energy of an impurity located at the center of multilayered spherical quantum dot (MSQD) is reported as a function of the dot and barrier thickness for different alloy compositions under the influence of a magnetic field. Within the effective mass approximation, the binding energy has been calculated using the fourth order Runge-Kutta method without magnetic field. A variational approach has been employed if a magnetic field is present. The binding energy in MSQD with equal dot and barrier thickness is calculated. It is shown that the binding energy in MSQD differs from that of a single quantum dot. Also, the geometry is dominant on the binding energy for thin MSQDs, but the magnetic field becomes more effective for thick MSQDs.  相似文献   

11.
张红  王学  赵剑锋  刘建军 《中国物理 B》2011,20(12):127301-127301
The binding energy of a hydrogenic impurity in self-assembled double quantum dots is calculated via the finite-difference method. The variation in binding energy with donor position, structure parameters and external magnetic field is studied in detail. The results found are: (i) the binding energy has a complex behaviour due to coupling between the two dots; (ii) the binding energy is much larger when the donor is placed in the centre of one dot than in other positions; and (iii) the external magnetic field has different effects on the binding energy for different quantum-dot sizes or lateral confinements.  相似文献   

12.
闪锌矿GaN量子点中类氢杂质态的束缚能   总被引:2,自引:1,他引:1       下载免费PDF全文
在有效质量近似下,用变分法研究了闪锌矿GaN/AlxGa1-xN单量子点中的类氢杂质态。结果表明量子点中的杂质位置和量子点结构参数(量子点高度H、半径R及Al含量x)对施主束缚能有很大的影响。当杂质位于量子点中心时,施主束缚能 有最大值。此外,施主束缚能 随着量子点高度H(半径 )的增大而减小,随着量子点中Al含量x的增大而增大。  相似文献   

13.
We have studied the behavior of the binding energy and photoionization cross-section of a donor-impurity in cylindrical-shape GaAs-Ga0.7Al0.3As quantum dots, under the effects of hydrostatic pressure and in-growth direction applied electric and magnetic fields. We have used the variational method under the effective mass and parabolic band approximations. Parallel and perpendicular polarizations of the incident radiation and several values of the quantum dot geometry have also been considered. Our results show that the photoionization cross-section growths as the hydrostatic pressure is increased. For parallel polarization of the incident radiation, the photoionization cross-section decreases when the impurity is shifted from the center of the dot. In the case of perpendicular polarization of the incident radiation, the photoionization cross-section increases when the impurity is shifted in the radial direction of the dot. For on-axis impurities the transitions between the ground state of the impurity and the ground state of the quantum dot are forbidden. In the low pressure regime (less than 13.5 kbar) the impurity binding energy growths linearly with pressure, and in the high pressure regime (higher than 13.5 kbar) the binding energy growths up to a maximum and then decreases. Additionally, we have found that the applied electric and magnetic fields may favor the increase or decrease in binding energy, depending on the impurity position.  相似文献   

14.
抛物量子点中强耦合束缚极化子的光学声子平均数   总被引:7,自引:4,他引:3  
采用线性组合算符和幺正变换方法研究了在库仑场束缚下抛物量子点中强耦合束缚极化子的振动频率和光学声子平均数,并对其进行了数值计算。结果表明:强耦合束缚极化子的振动频率和光学声子平均数随量子点的有效受限长度的增加而减小,随电子-LO声子耦合强度的增强而增加,束缚极化子的振动频率随库仑势的增加而减小。  相似文献   

15.
Impurity states in ZnSe/InP/ZnS core/shell/shell spherical quantum dot where electrons are localized in the InP shell are considered using variational method. It is assumed that the hydrogenlike impurity is located in the center of quantum dot core (ZnSe). The impurity ground state wave function and energy, as well as electron binding energy are obtained. Interband direct transitions from the ground valence state into the ground donor state are considered. Dependences of absorption edge on the inner and outer radii of the quantum layer are derived.  相似文献   

16.
陈时华  肖景林 《发光学报》2007,28(3):331-335
采用Pekar类型的变分方法研究了抛物量子点中强耦合束缚磁极化子的基态和激发态的性质.计算了束缚磁极化子的基态和激发态的能量、光学声子平均数以及束缚磁极化子的共振频率.讨论了这些量对回旋频率和有效束缚强度以及库仑束缚势的依赖关系.数值计算结果表明:量子点中强耦合束缚磁极化子的基态能量和共振频率以及光学声子平均数均随量子点的有效束缚强度的增加而减小,基态能量随库仑束缚势的增加而减小,随回旋频率的增加而增大.  相似文献   

17.
抛物量子点中强耦合束缚磁极化子的声子平均数   总被引:13,自引:6,他引:7  
采用线性组合算符和幺正变换方法导出了强耦合束缚磁极化子的振动频率和声子平均数。讨论了量子点的有效受限长度、磁场、库仑场和电子-LO声子耦合强度对抛物量子点中强耦合束缚磁极化子振动频率和声子平均数的影响。数值计算结果表明:强耦合束缚磁极化子的振动频率和声子平均数均随量子点的有效受限长度、回旋共振频率的增加而减小,随库仑束缚势的增加而增加,声子平均数随电子-LO声子耦合强度增加而减小。  相似文献   

18.
The effect of an intense laser field on the binding energy of hydrogenic impurity states with an impurity atom located at the center of a spherical quantum dot confined by an infinite barrier potential are studied as a function of the dot radius and of the intensity and frequency of the laser field. Accurate binding energies are obtained for the 1s, 2s and 2p states by numerical integration of the Schrödinger equation. The binding energies are found to increase with decrease in the dot radius, and decrease with increase in the value of the laser field amplitude λ in all cases.  相似文献   

19.
The energy levels and binding energies of a hydrogenic impurity in GaAs spherical quantum dots with radius R are calculated by the finite difference method. The system is assumed to have an infinite confining potential well with radius R, which can be viewed as a hard wall boundary condition. The parabolicity of the conduction band profile for GaAs material can be viewed as a parabolic potential well. The energy levels and binding energies are depended dramatically on the radius of the quantum dot and the parabolic potential well. The results show that parabolic potential can remarkably alter the energy level ordering and binding energy level ordering of hydrogenic impurity states for the quantum dot with a smaller radius R.  相似文献   

20.
The binding energy Eb of the acceptor-exciton complex (A,X) as a function of the radius (or of the impurity position of the acceptor) and the normalized oscillator strength of (A,X) in spherical ZnO quantum dots (QDs) embedded in a SiO2 matrix are calculated using the effective-mass approximation under the diagonalzation matrix technique, including a three-dimensional confinement of the carrier in the QD and assuming a finite depth. Numerical results show that the binding energy of the acceptor-exciton complexes is particularly robust when the impurity position of the acceptor is in the center of the ZnO QDs. It has been clearly shown from our calculations that these physical parameters are very sensitive to the quantum dot size and to the impurity position. These results could be particularly helpful, since they are closely related to experiments performed on such nanoparticles. This may allow us to improve the stability and efficiency of the semiconductor quantum dot luminescence which is considered critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号