首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal used to select model can produce a sharp peak at 2.076 eV in the nano-laser. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.  相似文献   

2.
黄伟其  陈汉琼  苏琴  刘世荣  秦朝建 《中国物理 B》2012,21(6):64209-064209
A new nanolaser concept using silicon quantum dots (QDs) is proposed. The conduction band opened by the quantum confinement effect gives the pumping levels. Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission. An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser. Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.  相似文献   

3.
硅量子点的弯曲表面引起系统的对称性破缺, 致使某些表面键合在能带的带隙中形成局域电子态.计算结果表明:硅量子点的表面曲率不同形成的表面键合结合能和电子态分布明显不同. 例如, Si–O–Si桥键在曲率较大的表面键合能够在带隙中形成局域能级, 而在硅量子点曲率较小的近平台表面上键合不会形成任何局域态, 但此时的键合结合能较低. 用弯曲表面效应(CS)可以解释较小硅量子点的光致荧光光谱的红移现象. CS效应揭示了纳米物理中又一奇妙的特性. 实验证实, CS效应在带隙中形成的局域能级可以激活硅量子点发光. 关键词: 硅量子点 弯曲表面效应 表面键合 局域能级  相似文献   

4.
黄伟其  吕泉  王晓允  张荣涛  于示强 《物理学报》2011,60(1):17805-017805
纳秒脉冲激光在氮气、氧气和空气等不同氛围中加工出的硅量子点都有光致荧光(PL)的发光增强效应,并且在700 nm波长附近观察到了受激辐射.在不同氛围下生成的样品有几乎相同的PL光谱分布,其原因是不同氛围下加工出的样品带隙中有相同的电子态分布.计算结果显示:当硅量子点表面被氮或氧钝化后,在带隙中能够形成几乎相同的局域电子态,这种局域电子态可以俘获来自导带的电子,从而形成亚稳态,这是PL发光增强乃至产生受激辐射的关键因素. 关键词: 硅量子点 PL光谱 发光增强 电子局域态  相似文献   

5.
The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs. From this point of view, we can build up radiative matter for emission. Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots. Our experimental results demonstrate that annealing is important in the treatment of the activation, and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.  相似文献   

6.
The optical spectra of quantum dots (QDs) of CdS and ZnSe grown in borosilicate glass by the sol-gel method are obtained and analyzed. It is found that at concentrations of the two semiconductors x<0.06% the emission spectra are due to annihilation of free (internal) excitons in quantum states. The mean size of the quantum dots for a given concentration of ZnSe and CdS is calculated and found to be in good agreement with the X-ray data, and the exciton binding energy is calculated with allowance for the dielectric mismatch between the semiconductor and matrix. It is proposed that this mismatch may be the cause giving rise to the exciton percolation level that is observed in QD arrays for both systems at x>0.06%. The emission from the surface level of CdS QDs in the region ~2.7 eV, formed by the outer atoms with dangling bonds, is observed for the first time, as is the emission band from surface localized states. The relation between the position of the maximum of this band and the energy of the 1S state of the free exciton is established. It is shown that the properties of surface localized states are largely similar to the analogous properties of localized states of 3D (amorphous semiconductors, substitutional solid solutions of substitution) and 2D (quantum wells and superlattices) structures.  相似文献   

7.
Helical quantum states in HgTe quantum dots with inverted band structures   总被引:1,自引:0,他引:1  
We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.  相似文献   

8.
Stimulated emission has been observed from oxide structure of silicon when optically excited by 514 nm laser. The photoluminescence (PL) pulse has a Lorentzian shape with a full width at half maximum (FWHM) of 0.5-0.6 nm. The twin peaks at 694 nm and 692 nm are dominated by stimulated emission which can be demonstrated by its threshold behavior and transition from sub-threshold to linear evolution in light emission. The gain coefficient from the evolution of the peak-emission intensity as a function of the optically pumped sample length has been measured. The oxide structure was fabricated by laser irradiation and annealing treatment on silicon. A model for explaining the stimulated emission has been proposed in which the trap states of the interface between oxide of silicon and porous nanocrystal play an important role.  相似文献   

9.
We have investigated the optical properties of silicon pillars formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in vacuum created under different repetition rates. The changes in optical characteristics of silicon pillar were systematically determined and compared as the number of KrF laser shots was increased from 1 to 15,000.The results show that silicon pillar PL curves exhibit a blue band around 430 nm and an ultraviolet band peaking at 370 nm with the vanishing of the green emission at 530 nm. A correlation between the intensity of the blue PL band and the intensity of the Si-O absorption bands has been exploited to explain such emission, whereas, the origin of the ultraviolet band may be attributed to different types of defects in silicon oxide.  相似文献   

10.
Samples of borosilicate glasses doped by CdS with concentrations smaller than 1% are studied. It is shown that, due to a disorder at interfaces of quantum dots, the main channels of emission of excitons by quantum dots are the annihilation of excitons in quantum and localized surface states, while the efficiency of interaction between the channels largely depends on the radius of quantum dots. It is found for the first time that states that form the second emission channel are not discrete energy levels in the band gap, as is usually assumed in some experimental and theoretical works, but rather form a quasi-continuous tail of the density of localized states. These localized states appear as a result of dangling bonds of outer atoms of quantum dots. Energy relaxation of carriers via localized states is the reason for a long response time of these structures to an external action and can be enhanced due to a polarization effect caused by different dielectric constants of materials of quantum dots and matrix.  相似文献   

11.
To extend the applicability of ZnO, with the bulk band gap of about 3.3 eV, into deep UV region, we have grown a multilayer of alumina capped ZnO quantum dots of mean in-plane sizes in the range of ∼1.8-3.6 nm at room temperature using alternate Pulsed Laser Deposition. Size dependent blue shift of the band gap of these dots up to ∼4.5 eV is observed in the optical absorbance spectra. The observed blue shift can be understood using the effective mass approximation in weak and strong confinement regimes.  相似文献   

12.
采用射频和脉冲磁控共溅射法并结合快速光热退火法制备了含硅量子点的SiC_x薄膜.采用掠入射X射线衍射、喇曼光谱、紫外-可见-近红外分光光度计和透射电子显微镜对薄膜进行表征.研究了脉冲溅射功率对薄膜中硅量子点数量、尺寸、晶化率和薄膜光学带隙的影响.结果表明:当溅射功率从70 W增至100 W时,硅量子点数量增多,尺寸增至5.33nm,晶化率增至68.67%,而光学带隙则减至1.62eV;随着溅射功率进一步增至110 W时,硅量子点数量减少,尺寸减至5.12nm,晶化率降至55.13%,而光学带隙却增至2.23eV.在本实验条件下,最佳溅射功率为100 W.  相似文献   

13.
Silicon quantum dots fabricated by nanosecond pulsed laser in nitrogen, oxygen or air atmosphere have enhanced photoluminescence (PL) emission with the stimulated emission observed at about 700 nm. It is difficult to distinguish between the photoluminescence peaks emitted from samples prepared in different atmospheres. The reason for the appearance of similar peaks may be the similar distribution of the localised states in the gap for different samples when silicon dangling bonds of quantum dots are passivated by nitrogen or oxygen. It is revealed that both the kind and the density of passivated bonds on quantum dot surface prepared in oxygen or nitrogen have a strong influence on the enhancement of PL emission.  相似文献   

14.
PbS quantum dots of average size 10 nm are encapsulated in a matrix (polyvinyl alcohol (PVA)) following chemical route. They are irradiated with 160 MeV Ni12+ ion beam with fluences 1012-1013 ions/cm2. Red shift in the absorption response in the optical absorption spectra reveal size enhancement of the quantum dots after irradiation and was confirmed by transmission electron microscopy (TEM). Photoluminescence (PL) study was carried out with excitation wavelength 325 nm on both unirradiated and irradiated samples at different fluences and fluence-dependent surface states and excitonic emission is observed in the PL study. The Huang-Rhys coupling constant decreases significantly after swift heavy ion (SHI) irradiation and shows a decreasing trend with increase in ion fluence.  相似文献   

15.
The properties of ZnO quantum dots (QDs) synthesized by the sol-gel process are reported. The primary focus is on investigating the origin of the visible emission from ZnO QDs by the annealing process. The X-ray diffraction results show that ZnO QDs have hexagonal wurtzite structure and the QD diameter estimated from Debye-Scherrer formula is 8.9 nm, which has a good agreement with the results from transmission electron microscopy images and the theoretical calculation based on the Potential Morphing Method. The room-temperature photoluminescence spectra reveal that the ultraviolet excitation band has a red shift. Meanwhile, the main band of the visible emission shifts to the green luminescence band from the yellow luminescence one with the increase of the annealing temperature. A lot of oxygen atoms enter into Zn vacancies and form oxygen antisites with increasing temperature. That is probably the reason for the change of the visible emission band.  相似文献   

16.
The aging of the photoluminescence (PL) in bio-conjugated and non-conjugated CdSeTe–ZnS core–shell quantum dots (QDs) is studied by the micro-PL, micro-Raman and X-ray diffraction (XRD) in the samples of buffered QD solution dried on a crystalline Si wafer and stored in the atmospheric ambience for about 2 years. The aging of the PL consists in a “blue” spectral shift of the PL band, an increase in PL band half-width and the decrease in the PL intensity. These changes are more pronounced in the conjugated QD samples. The XRD analysis of the aged samples revealed that the QD core diameter is reduced by ∼1.5 nm in the conjugated QDs as compared to the non-conjugated ones. The possible mechanism of PL spectrum aging is the oxidation that decreases the QD core dimension. It is concluded that the bio-conjugation promotes QD oxidation and the mechanism of the effect is proposed.  相似文献   

17.
FEM combining with the K·P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%∼4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.  相似文献   

18.
Aqueous dispersion of 4-8 nm size stable ZnO quantum dots (QDs) exhibiting luminescence in the visible region have been synthesized by a simple solution growth technique at room temperature. Silica has been used as capping agent to control the particle size as well as to achieve uniform dispersion of QDs in aqueous medium. X-ray diffractometer (XRD) analysis reveals formation phase pure ZnO particles having wurzite (hexagonal) structure. Atomic force microscope (AFM) images show that the particles are spherical in shape, having average crystalline sizes ∼4, 5.5 and 8 nm for samples prepared at pH values of 10, 12 and 14, respectively. From the optical absorption studies, the band gap energy of QDs is found to be blue shifted as compared to bulk ZnO (3.36 eV) due to the quantum confinement effect and is consistent with the band gap calculated by using effective-mass approximation model. The photoluminescence (PL) observed in these QDs has been attributed to the presence of defect centers.  相似文献   

19.
A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.  相似文献   

20.
在本文中我们首次报道了p型掺杂的自组织Si/Ge量子点中空穴能级子带间的电子拉曼散射,此电子跃迁的能量为105meV。Si/Ge量子点Ge Ge模的共振拉曼散射表明此空穴能级间的电子拉曼散射与Γ点附近的E0(≈2.52eV)发生了共振,而E1的能量小于2.3eV.变温实验和偏振实验进一步证实了我们的指认。所有观测的实验数据与6 bandk·p能带结构理论的计算结果吻合得很好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号