首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
物理学   4篇
  2013年   3篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 9 毫秒
1
1.
A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.  相似文献   
2.
黄伟其  陈汉琼  苏琴  刘世荣  秦朝建 《中国物理 B》2012,21(6):64209-064209
A new nanolaser concept using silicon quantum dots (QDs) is proposed. The conduction band opened by the quantum confinement effect gives the pumping levels. Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission. An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser. Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.  相似文献   
3.
硅量子点的弯曲表面引起系统的对称性破缺, 致使某些表面键合在能带的带隙中形成局域电子态.计算结果表明:硅量子点的表面曲率不同形成的表面键合结合能和电子态分布明显不同. 例如, Si–O–Si桥键在曲率较大的表面键合能够在带隙中形成局域能级, 而在硅量子点曲率较小的近平台表面上键合不会形成任何局域态, 但此时的键合结合能较低. 用弯曲表面效应(CS)可以解释较小硅量子点的光致荧光光谱的红移现象. CS效应揭示了纳米物理中又一奇妙的特性. 实验证实, CS效应在带隙中形成的局域能级可以激活硅量子点发光. 关键词: 硅量子点 弯曲表面效应 表面键合 局域能级  相似文献   
4.
The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, Lo1, and Lo2 lines in PL spectra due to Si-N, Si-NO, Si=O, and Si-O-Si bonds on curved surface, respectively. Si-Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the Lyb line of electroluminescence (EL) emission.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号