首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Experimental results on the visualization of the density of states in InAs/GaSa(001) quantum dots that were obtained by tunnel atomic-force microscopy in an ultrahigh vacuum are presented. A one-dimensional (1D) model of dissipative quantum tunneling is proposed for describing experimental current-voltage characteristics of a tunnel contact between an atomic force microscope probe and the surface of InAs/GaAs (001) quantum dots. It was found that the influence of two local modes of the wide-band matrix on the probability of 1D dissipative tunneling leads to the appearance of several randomly spaced peaks in the field dependence. It was shown that the theoretical dependence agrees qualitatively with experimental the current-voltage characteristic of the atomic force microscope tip and the surface of InAs/GaAs(001) quantum dots.  相似文献   

2.
郭汝海  时红艳  孙秀冬 《中国物理》2004,13(12):2141-2146
The quantum confined Stark effect (QCSE) of the self-assembled InAs/GaAs quantum dots has been investigated theoretically. The ground-state transition energies for quantum dots in the shape of a cube, pyramid or “truncated pyramid” are calculated and analysed. We use a method based on the Green function technique for calculating thestrain in quantum dots and an efficient plane-wave envelope-function technique to determine the ground-state electronic structure of them with different shapes. The symmetry of quantum dots is broken by the effect of strain. So the properties of carriers show different behaviours from the traditional quantum device. Based on these results, we also calculate permanent built-in dipole moments and compare them with recent experimental data. Our results demonstrate that the measured Stark effect in self-assembled InAs/GaAs quantum dot structures can be explained by including linear grading.  相似文献   

3.
王红培  王广龙  喻颖  徐应强  倪海桥  牛智川  高凤岐 《物理学报》2013,62(20):207303-207303
采用分子束外延技术对δ掺杂GaAs/AlxGa1-xAs二维电子气(2DEG)样品进行了生长. 在样品生长过程中, 分别改变掺杂浓度(Nd)、空间隔离层厚度(Wd) 和AlxGa1-xAs中Al组分(xAl)的大小, 并在双温(300 K, 78 K)条件下对生长的样品进行了霍尔测量; 结合测试结果, 分别对Nd, WdxAl与GaAs/AlxGa1-xAs 2DEG的载流子浓度和迁移率之间的关系规律进行了细致的分析讨论. 生长了包含有低密度InAs量子点层的δ掺杂GaAs/AlxGa1-xAs 2DEG 样品, 采用梯度生长法得到了不同密度的InAs量子点. 霍尔测量结果表明, 随着InAs量子点密度的增加, GaAs/AlxGa1-xAs 2DEG的迁移率大幅度减小, 实验中获得了密度最低为16×108/cm2的InAs量子点样品. 实验结果为内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs 2DEG的研究和应用提供了依据和参考. 关键词: 二维电子气 InAs量子点 载流子浓度 迁移率  相似文献   

4.
Atomic force microscopy (AFM) is typically used to measure the quantum dot shape and density formed by lattice mismatched epitaxial growth such as InAs on GaAs. However, AFM images are distorted when two dots are situated in juxtaposition with a distance less than the AFM tip width. Scanning electron Microscope (SEM) is much better in distinguishing the dot density but not the dot height. Through these measurements of the growth of InxGa1-xAs cap layer on InAs quantum dots, it was observed that the InGaAs layer neither covered the InAs quantum dots and wetting layer uniformly nor 100% phase separates into InAs and GaAs grown on InAs quantum dots and wetting layer, respectively.  相似文献   

5.
InAs self‐assembled quantum dots (QDs) were grown by molecular beam epitaxy on (001) GaAs substrate. Uncapped and capped QDs with GaAs and graphene layers were studied using atomic force microscopy and Raman spectroscopy. Graphene multi‐layer was grown by chemical vapor deposition and transferred on InAs/GaAs QDs. It is well known that the presence of a cap layer modifies the size, shape, and density of the QDs. According to the atomic force microscopy study, in contrast to the GaAs capped sample, which induce a dramatic decrease of the density and height of dots, graphene cap layer sample presents a slight influence on the surface morphology and the density of the islands compared with the uncapped one. The difference shown in the Raman spectra of the samples is due to change of strain and alloy disorder effects on the QDs. Residuals strain and the relaxation coefficients have been investigated. All results confirm the best crystalline quality of the graphene cap layer dots sample relative to the GaAs capped one. So graphene can be used to replace GaAs in capping InAs/GaAs dots. To our knowledge, such study has not been carried out until now. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We have investigated the optical properties of InAs/GaAs (1 1 3)A quantum dots grown by molecular beam epitaxy (MBE) with different growth rates by photoluminescence spectroscopy (PL) as a function of the excitation density and the sample temperature (10–300 K). Reflection high-energy electron diffraction (RHEED) is used to investigate the formation process of InAs quantum dots (QDs). A redshift of the InAs QDs PL band emission was observed when the growth rate was increased. This result was explained by the increase of the InAs quantum dot size with increasing growth rate. A significant redshift was observed when the arsenic flux was decreased. The evolution of the PL peak energy with increasing temperature has showed an S-shaped form due to the localization effects and is attributed to the efficient relaxation process of carriers in different InAs quantum dots and to the exciton transfer localized at the wetting layer.  相似文献   

7.
A model describing the emission of photoexcited electrons and holes from an array of InAs quantum dots into the GaAs matrix is suggested. The analytical expression obtained for the emission efficiency takes into account the thermal emission of charge carriers into the GaAs matrix and two-dimensional states of the InAs wetting layer, tunneling and thermally activated tunneling escape, and electron transitions between the quantum-confinement levels in the conduction band of InAs. The temperature dependences of the photosensitivity in the regions of the ground-state and first excited-state optical transitions in InAs/GaAs quantum dots grown by gas-phase epitaxy are investigated experimentally. A number of quantum dot parameters are determined by fitting the results of a theoretical calculation to the experimental data. Good agreement between the theoretical and experimental results is obtained in this way.  相似文献   

8.
研究了双层堆垛InAs/GaAs/InAs自组织量子点的生长和光致发光(PL)的物理性质。通过优化InAs淀积量、中间GaAs层厚度以及InAs量子点生长温度等生长条件,获得了室温光致发光1391~1438nm的高质量InAs量子点。研究发现对量子点GaAs间隔层实施原位退火、采用Sb辅助生长InGaAs盖层等方法可以增强高密度(2×1010 cm-2)InAs量子点的发光强度,减小光谱线宽,改善均匀性和红移发光波长。  相似文献   

9.
Epitaxially grown self-assembled InAs quantum dots (QDs) have found applications in optoelectronics. Efforts are being made to obtain efficient quantum-dot lasers operating at longer telecommunication wavelengths, specifically 1.3 μm and 1.55 μm. This requires narrow emission linewidth from the quantum dots at these wavelengths. In InAs/GaAs single layer quantum dot (SQD) structure, higher InAs monolayer coverage for the QDs gives rise to larger dots emitting at longer wavelengths but results in inhomogeneous dot-size distribution. The bilayer quantum dot (BQD) can be used as an alternative to SQDs, which can emit at longer wavelengths (1.229 μm at 8 K) with significantly narrow linewidth (∼16.7 meV). Here, we compare the properties of single layer and bilayer quantum dots grown with higher InAs monolayer coverage. In the BQD structure, only the top QD layer is covered with increased (3.2 ML) InAs monolayer coverage. The emission line width of our BQD sample is found to be insensitive towards post growth treatments.  相似文献   

10.
We perform experimental and theoretical studies of the electronic structure and relaxation processes in pyramid shaped InAs/GaAs quantum dots (QDs), grown by molecular beam epitaxy in the Stranski-Krastanow growth mode. Structural properties are characterized with plan view and cross section transmission electron microscopy.Finite difference calculations of the strain and the 3D Schrödinger equation, taking into account piezoelectric and excitonic effects, agree with experimental results on transition energies of ground and excited states, revealed in luminescence and absorption spectra. We find as relative standard deviation of the size fluctuation ξ=0.04; the pyramid shape fluctuates between {101} and {203} side facets.Carrier capture into the QD ground state after carrier excitation above barrier is a very efficient process. No luminescence from excited states is observed at low excitation density. Energy relaxation processes in the zero-dimensional energy states are found to be dominated by phonon energy selection rules. However, multi-phonon emission (involving GaAs barrier, InAs wetting layer, InAs QD and interface modes) allows for a large variety of relaxation channels and thus a phonon bottleneck effect does not exist here.  相似文献   

11.
The experimental results of a photoluminescence kinetics study of InAs/GaAs structures with quantum dots grown by metal-organic vapor-phase epitaxy are shown. The measurements have revealed the fast capture of excited carriers from the GaAs barrier to quantum dots and slow interlevel relaxation inside the quantum dots.  相似文献   

12.
We study the mechanism of ordered growth of InAs quantum dots (islands) on a GaAs/InP substrate in theory and point out that the tensile strain can be used to control InAs/InP self-assembled quantum dots arrangement. Photoluminescence spectrum, and atomic force microscopy images have been investigated. In the experiment, ordered InAs islands have been obtained and the maximum density of quantum dots is 1.6×1010 cm−2 at 4 monolayers InAs layer.  相似文献   

13.
Extremely low density InAs quantum dots (QDs) are grown by molecular beam droplet epitaxy. The gallium deposition amount is optimized to saturate exactly the excess arsenic atoms present on the GaAs substrate surface during growth, and low density InAs/GaAs QDs (4× 10^6 cm^-2) are formed by depositing 0.65 monolayers (MLs) of indium. This is much less than the critical deposition thickness (1.7 ML), which is necessary to form InAs/GaAs QDs with the conventional Stranski-Krastanov growth mode. The narrow photoluminescence linewidth of about 24 meV is insensitive to cryostat temperatures from IO K to 250K. All measurements indicate that there is no wetting layer connecting the QDs.  相似文献   

14.
We report on the single photon emission from single InAs/GaAs self-assembled Stranski-Krastanow quantum dots up to 80 K under pulsed and continuous wave excitations. At temperature 8OK, the second-order correlation function at zero time delay, g^(2)(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.  相似文献   

15.
Raman spectra of InAs quantum dots (QDs) on InP substrate were investigated. Both longitudinal-optic (LO) and transverse-optic (TO) frequency of InAs QDs showed a large blue-shift comparing to its bulk due to the compressive strain in InAs QDs. Raman scattering of InAs QDs with a thin GaAs interlayer was studied. We obtained that the peak position of LO and TO mode of InAs QDs became larger blue-shifted when we inserted the GaAs layer. At the same time, we found a red-shift of the frequency of GaAs LO mode because of tensile strain. Theoretical calculation was performed and its prediction coincided with our experiment results well. They both showed that strain played an important role in formation of InAs QDs.  相似文献   

16.
A route towards optimisation of uniformity and density of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy (MOVPE) through successive variations of the growth parameters is reported. It is demonstrated that a key parameter in obtaining a high density of quantum dots is the V/III ratio, a fact which was shown to be valid when either AsH3 (arsine) or tertiary-butyl-arsine (TBA) were used as group V precursors. Once the optimum V/III ratio was found, the size distribution was further improved by adjusting the nominal thickness of deposited InAs material, resulting in an optimum thickness of 1.8 monolayers of InAs in our case. The number of coalesced dots was minimised by adjusting the growth interruption time to approximately 30 s. Further, the uniformity was improved by increasing the growth temperature from 485 °C to 520 °C. By combining these optimised parameters, i.e. a growth temperature of 520 °C, 1.8 monolayers InAs thickness, 30 s growth stop time and TBA as group V precursor, a full-width-half-maximum (FWHM) of the low temperature luminescence band of 40 meV was achieved, indicating a narrow dot size distribution.  相似文献   

17.
We report on calculation of binding energies of excitons as well as positively and negatively charged excitons and biexcitons in type-II quantum dots. The shape of the GaSb/GaAs quantum dot is assumed lens-like and the energies are calculated within the Hartree–Fock approximation. A large enhancement of the binding energies has been estimated in comparison with the type-I quantum dots (InAs/GaAs) which is in good agreement with the recent experimental findings.  相似文献   

18.
Coherent InAs islands separated by GaAs spacer (d) layers are shown to exhibit self-organized growth along the vertical direction. A vertically stacked layer structure is useful for controlling the size distribution of quantum dots. The thickness of the GaAs spacer has been varied to study its influence on the structural and optical properties. The structural and optical properties of multilayer InAs/GaAs quantum dots (QDs) have been investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The PL full width at half maximum (FWHM), reflecting the size distribution of the QDs, was found to reach a minimum for an inter-dots GaAs spacer layer thickness of 30 monolayers (ML). For the optimized structure, the TEM image shows that multilayer QDs align vertically in stacks with no observation of apparent structural defects. Furthermore, AFM images showed an improvement of the size uniformity of the QDs in the last layer of QDs with respect to the first one. The effect of growth interruption on the optical properties of the optimized sample (E30) was investigated by PL. The observed red shift is attributed to the evolution of the InAs islands during the growth interruption. We show the possibility of increasing the size of the QDs approaching the strategically important 1.3 m wavelength range (at room temperature) with growth interruption after InAs QD deposition.  相似文献   

19.
We present a cross-sectional scanning tunneling microscopy (X-STM) investigation of InAs quantum dots in a GaAs matrix. The structures were grown by molecular beam epitaxy (MBE) at a low growth rate of 0.01 ML/s and consist of five layers of uncoupled quantum dot structures. Detailed STM images with atomic resolution show that the dots consist of an InGaAs alloy and that the indium content in the dot increases towards the top. The analysis of the height versus base-length relation obtained from cross-sectional images of the dots shows that the shape of the dots resembles that of a truncated pyramid and that the square base is oriented along the [010] and [100] directions. Using scanning tunneling spectroscopy (STS) we determined the onset for electron tunneling into the conduction and out of the valence band, both in the quantum dots and in the surrounding GaAs matrix. We found equal voltages for tunneling out of the valence band in GaAs or InGaAs whereas tunneling into GaAs occurred at higher voltages than in InGaAs.  相似文献   

20.
The self-assembled InAs/GaAs quantum dots (QDs) with extremely low density of 8×106 cm-2 are achieved using higher growth temperature and lower InAs coverage by low-pressure metal-organic chemical vapour deposition (MOVCD). As a result of micro-photoluminescence (micro-PL), for extremely low density of 8×106 cm-2 InAs QDs in the micro-PL measurements at 10 K, only one emission peak has been achieved. It is believed that the InAs QDs have a good potential to realize single photon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号