首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
带粘弹性包覆层充液管道中的超声导波纵向模态   总被引:3,自引:0,他引:3  
理论分析和实验研究了超声导波纵向模态在带粘弹性包覆层充液管道中的传播特性。得到了纵向模态的频散曲线。以此确定了适合带粘弹性包覆层充液管道缺陷检测的一定频带的纵向模态。经分析认为,频散小,衰减低的频带0~50 kHz的L(0,1)模态和未受干扰的L(0,2)模态分支部分,如频带170~210 kHz的L(0,4)模态,适合检测外直径25 mm,壁厚1.2 mm,外壁涂覆0.35 mm厚环氧树脂的充水钢管中的缺陷。而频散和衰减大,能量主要在水或环氧树脂粘弹性层中传播的纵向模态则不适合检测该类管道中的缺陷。  相似文献   

2.
讨论了钠冷快堆(Sodium-cooled Fast Reactor,SFR)主管道的整体温度和内部液态金属钠流动速度的变化对管道导波传播特性的影响。推导了充液管道中导波频散方程的一般形式,并给出了管道内液态金属钠处于流动状态下的导波频散方程。采用数值计算方法获得了管内液态金属钠处于不同温度和不同流速时的导波纵向模式频散曲线和导波时域波形。结果表明,温度变化对基阶纵向模式的影响较小,但对高阶纵向模式的影响较大;液态钠流速增大会使导波频散曲线向高频轻微移动,但在实际检测中可以忽路管内液体流动速度的影响。通过对时域接收波形的模拟计算,进一步考察了液态金属钠的温度及流动速度变化对导波传播的影响,并通过对比不同模态的激发特点和不同频段的导波时域波形特点,结合导波频散曲线,给出了适用于SFR管道超声无损检测的导波模态和声源激发频段选择方案。   相似文献   

3.
充粘液管材中超声纵向导波的无损检测参数选择   总被引:4,自引:1,他引:3  
对超声纵向导波在充粘液管材中的传播特性进行了分析。在假设实频率和复波数的基础上,计算了导波的频散曲线,得到并分析了导波在系统中的位移分布曲线和衰减系数分布曲线,以此确定了用各模式检测管材中缺陷的最佳频厚积范围和检测的最佳位置。分析结果表明:频厚积在0.07MHz·mm以下,用L(0,1)模式检测较为理想,检测管内壁缺陷时更灵敏;在0.09~0.16MHz·mm之间用L(0,2)模式检测及在0.18~0.28MHz·mm之间用 L(0,3)模式检测时较为理想。  相似文献   

4.
钱骥  陈鑫  杨金川 《应用声学》2017,36(6):548-557
超声导波是近年来桥梁拉索无损检测研究的重要方法之一。针对弹性波在高强钢丝介质中传播的多模态频散问题,采用单点时域波形的小波时频变换进行混叠信号的模态识别分离。通过数值求解Pochhammer频率超越方程,计算得到0~1.5 MHz范围内纵向导波模态理论频散曲线;采用有限元模拟半波正弦脉冲激励导波在钢丝中传播过程,由小波时-频变换得到导波模态分布,并进行了不同腐蚀程度钢丝实验对比分析。结果表明,经小波时-频变换得到的第1、2、3阶纵向导波模态与理论值对应吻合,单点时域波形的小波时-频变换结果能够有效识别高强钢丝中的导波模态;钢丝在无腐蚀状态下,一阶纵向导波模态能量占比达57.74%,随腐蚀程度增加,能量更为集中到一阶纵波模态,二阶模态能量逐渐减小。  相似文献   

5.
鲁珊珊  吴英思  刘飞 《应用声学》2018,37(4):469-474
大型钢结构在役应力检测意义重大,基于超声导波声弹性效应进行应力检测具有潜在的优势。本文基于等效弹性常数法研究了杆中超声导波的声弹性效应。通过计算典型钢结构构件钢杆的频散曲线,确定了检测频率范围,对不同工作应力状态下L(0,1)、F(1,1)与T(0,1)模态的群速度值进行了理论分析与数值模拟。结果表明: L(0,1)模态较适合于钢杆轴力检测, F(1,1)、T(0,1)模态声弹性效应较弱,不适合于应力检测; L(0,1)模态的声弹性效应随着频率的增加而减弱;理论分析与有限元计算对声弹性效应的验证都与波结构轴向位移对声弹性效应的判断得到了较好的吻合。  相似文献   

6.
随着管道服役时间的增加,其损伤逐渐累积,最终导致泄漏或爆炸事故。引入导波在线监测管道损伤是确保其安全运行的重要保障。周向零阶水平剪切(CSH0)波具有不易频散、对管道轴向缺陷敏感等优秀特性,非常适用于管道轴向缺陷的定量表征。该文 基于周向SH0导波在管道的传播特性,通过有限元模拟和试验对管道周向SH0模态导波与轴向缺陷的定量关系展开研究。结果表明:管道曲率半径越大,周向SH0模态的传播特性越接近板中SH0模态的传播特性;导波信号的反射系数和透射系数对轴向缺陷的长度和深度均呈现单调变化。依此建立了缺陷定量表征的关系云图,可用于评估缺陷尺寸。  相似文献   

7.
为了研究孔隙介质圆柱纵向表面波的传播规律,分析其频散和衰减特性,在正交曲线坐标系下建立了表面波的频散方程,通过数值计算得到频散曲线,将纵向导波最低模态与表面波进行对比,并分析了曲率半径及孔隙参数对表面波频散和衰减的影响。结果表明,当频率足够大时,导波最低模态的频散曲线与表面波近似;在同一频率下,表面波的相速度随曲率半径的增大而增大,随孔隙度的增大而减小;表面波的衰减随孔隙度的增大而增大。研究结果为开展孔隙介质圆柱结构的超声无损评价提供了一定的理论参考。  相似文献   

8.
王鑫  张金  沈洋  魏影 《应用声学》2018,37(3):338-344
超声导波检测技术作为一种新兴的无损检测技术广泛应用于圆管类结构。为选择合适于不同缺陷检测的导波模态,推导分析了圆管导波传播的运动方程和频散方程;利用数值计算的方法得到了超声导波在圆管中传播的频散曲线和各模态沿壁厚方向的位移分布图,分析得出各个模态对不同缺陷的敏感程度;以一种特定的圆管为例,建立圆管缺陷有限元模型,对不同类型圆管缺陷对导波传播特性的影响进行仿真计算。结果表明,纵向模态对周向缺陷比较敏感,而扭转模态则对轴向缺陷更敏感,仿真结果与理论分析结果相吻合,为圆管缺陷检测的超声导波模态选择提供了理论依据。  相似文献   

9.
超声导波检测技术作为一种新兴的无损检测技术广泛应用于圆管类结构。为选择合适于不同缺陷检测的导波模态,推导分析了圆管导波传播的运动方程和频散方程;利用数值计算的方法得到了超声导波在圆管中传播的频散曲线和各模态沿壁厚方向的位移分布图,分析得出各个模态对不同缺陷的敏感程度;以一种特定的圆管为例,建立圆管缺陷有限元模型,对不同类型圆管缺陷对导波传播特性的影响进行仿真计算。结果表明,纵向模态对周向缺陷比较敏感,而扭转模态则对轴向缺陷更敏感,仿真结果与理论分析结果相吻合,为圆管缺陷检测的超声导波模态选择提供了理论依据。  相似文献   

10.
利用导波对固体火箭发动机的多层结构壳体进行检测是一种很有前景的无损检测方法。本文应用全局矩阵法,推导了多层结构壳体的导波频散方程,并分别针对固体火箭发动机4种不同层数的壳体导波频散曲线进行了求解,发现当结构层数和第一层厚度增加时,各模式曲线的间隔缩小,曲线数目增加,并有向零频方向靠拢的趋势。同时研究了粘接质量变化对频散特征的影响,随着胶层质量相对变差,频散曲线总体向低频漂移。  相似文献   

11.
The pipe bend significantly changes the propagation characteristics of guided wave,and makes the interpretation of the received signals difficult.Therefore,better understanding of guided wave propagating in bended pipe is essential for the inspection of pipeline comprising bends.First of all,the different features of dispersion curves derived with the semi-analytical finite element method for guided wave in bended pipes are summarized.Secondly,based on the dispersion curves for guided wave in bended pipes,experiments are performed to investigate the mode conversions of L(0,1) mode guided wave traveling through pipe bends.It is found that,except for the mode conversion from L(0,1) to F(1,1),the L(0,1) reflections of bends are also observed in some cases,which are proven to be the mode converted negative L(0,1)mode guided wave,and the negative L(0,1) mode guided wave becomes more obvious with the decrease of excitation frequency and bending radius.The findings of this paper will provide some insight for guided wave behavior in bended pipe,and generalize the application of guided wave inspection in practical pipelines.  相似文献   

12.
The use of ultrasonic guided waves for the inspection of pipes with elbow and U-type bends has received much attention in recent years, but studies for more general bend angles which may also occur commonly, for example in cross-country pipes, are limited. Here, we address this topic considering a general bend angle φ, a more general mean bend radius R in terms of the wavelength of the mode studied and pipe thickness b. We use 3D Finite Element (FE) simulation to understand the propagation of fundamental axisymmetric L(0, 2) mode across bends of different angles φ. The effect of the ratio of the mean bend radius to the wavelength of the mode studied, on the transmission and reflection of incident wave is also considered. The studies show that as the bend angle is reduced, a progressively larger extent of mode-conversion affects the transmission and velocity characteristics of the L(0, 2) mode. However the overall message on the potential of guided waves for inspection and monitoring of bent pipes remains positive, as bends seem to impact mode transmission only to the extent of 20% even at low bend angles. The conclusions seem to be valid for different typical pipe thicknesses b and bend radii. The modeling approach is validated by experiments and discussed in light of physics of guided waves.  相似文献   

13.
Propagation phenomena of wideband guided waves in a bended pipe   总被引:1,自引:0,他引:1  
Nishino H  Yoshida K  Cho H  Takemoto M 《Ultrasonics》2006,44(Z1):e1139-e1143
Ultrasonic guided waves in pipes have been anticipated as a rapid screening technique for pipe inspection because of their long-range propagation due to low energy leakage. In this paper, the propagation phenomena of guided waves in a bended pipe were investigated using a wideband laser ultrasonic system. The laser ultrasonic system, together with wavelet transformation, is a powerful tool for observing the dispersive phenomena intrinsic to guided waves. Bended stainless steel (SUS304) pipes with 6-mm outer diameter and 1-mm wall thickness were used in the experiments. The bending angles of the pipes were set to 0 degrees (straight pipe), 10 degrees, 30 degrees, 60 degrees and 90 degrees. The radius of the bend was 12.5 mm in all the pipes. A Q-switched Nd:YAG laser was employed to generate the guided waves. The generated guided waves were detected with a heterodyne interferometer. The obtained time-domain signals and their wavelet coefficients indicated the following two conclusions: (1) The amplitude of the F(1,1) mode converted from the L(0,1) mode increased with the increase of the bending angle. (2) Mode conversions from the L(0,1) to F(1,1) modes and vice versa were clearly observed in the low-frequency range up to around 200 kHz.  相似文献   

14.
Cheong YM  Lee DH  Jung HK 《Ultrasonics》2004,42(1-9):883-888
The dispersion curves for the feeder pipes in PHWR nuclear power plants were determined. The wave modes used for the detection of notches in the feeder pipe were confirmed as F(m,2) and/or L(0,1) by an analysis of short time Fourier transformation (STFT). The axial notches in the straight pipe were not detectable, but an axial notch in a bent pipe was detected with the mode at the frequency of 500 kHz. Initial F(m,2) and/or L(0,1) modes contains a circumferential displacement and might be converted to certain complicated modes in the bent region, which is sensitive to the axial notch. The circumferential guided wave technique was also applied for quantitative evaluation of the axial notches. The waves generated by a rocking motion of the transducer along the circumferential direction were estimated as the circumferential guided waves after a review of the acquired data and the dispersion curves.  相似文献   

15.
Although many technologies exist for inspecting piping systems, they are most successful on straight pipes and are often unable to accommodate the added complexities of pipe elbows, bends, twists, and branches, particularly if the region of interest is inaccessible. This paper presents a numerical technique based on the elastodynamic finite integration technique for simulating guided elastic wave propagation in piping systems. Comparisons show agreement between experimental and simulated data, and guided wave interaction with flaws, focusing, and propagation in pipe bends are presented. These examples demonstrate the ability of the simulation method to be used to study elastic wave propagation in piping systems which include three-dimensional pipe bends, and suggest its potential as a design tool for designing pipe inspection hardware and ultrasonic signal processing algorithms.  相似文献   

16.
Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.  相似文献   

17.
The acoustic properties of circular bends in pipework systems are investigated by calculation of the mode shapes and propagation constants of the acoustic modes of the bend, the torus modes, and by evaluation of the transmission and reflection coefficients at a bend in an otherwise infinite straight pipe. The coefficients for the first three cylinder and torus modes are plotted against frequency for the case of a plane wave incident upon a 90° bend. The pipe walls are assumed to be rigid.  相似文献   

18.
研究埋地充液管道中低频轴对称波传播特性。将土壤考虑为黏弹介质,结合Kennard薄壳方程和Kelvin-Voigt线性黏弹性模型,引入土壤载荷矩阵,推导出土-管滑移情形下流体主导波和管壁压缩波的相速度表达式。通过数值模拟计算得到流体主导波和管壁压缩波的频散和衰减曲线并进行可靠性验证,分析两种波引起的管壁径向位移之比,讨论厚径比和品质因子对流体主导波传播的影响。结果表明,黏弹介质对流体主导波和管壁压缩波的相速度影响较小,但对衰减影响较大;流体主导波对管壁径向位移有较大的影响,是泄露噪声传播的主要载体;厚径比越大,流体主导波的相速度越大,衰减越小;而品质因子越大,流体主导波的频散和衰减都越小。研究结果可为埋地充液管道的泄漏检测提供一定的理论参考。   相似文献   

19.
Guided wave propagation theories have been widely explored for about one century. Earlier theories on single-layer elastic hollow cylinders have been very beneficial for practical nondestructive testing on piping and tubing systems. Guided wave flexural (nonaxisymmetric) modes in cylinders can be generated by a partial source loading or any nonaxisymmetric discontinuity. They are especially important for guided wave mode control and defect analysis. Previous investigations on guided wave propagation in multilayered hollow cylindrical structures mostly concentrate on the axisymmetric wave mode characteristics. In this paper, the problem of guided wave propagation in free hollow cylinders with viscoelastic coatings is solved by a semianalytical finite element (SAFE) method. Guided wave dispersion curves and attenuation characteristics for both axisymmetric and flexural modes are presented. Due to the fact that dispersion curve modes obtained from SAFE calculations are difficult to differentiate from each other, a mode sorting method is established to distinguish modes by their orthogonality. Theoretical proof of the orthogonality between guided wave modes in a viscoelastic coated hollow cylinder is provided. Wave structures are also calculated and discussed in view of wave mechanics in multilayered cylindrical structures containing viscoelastic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号