首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
物理学   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
研究埋地充液管道中低频轴对称波传播特性。将土壤考虑为黏弹介质,结合Kennard薄壳方程和Kelvin-Voigt线性黏弹性模型,引入土壤载荷矩阵,推导出土-管滑移情形下流体主导波和管壁压缩波的相速度表达式。通过数值模拟计算得到流体主导波和管壁压缩波的频散和衰减曲线并进行可靠性验证,分析两种波引起的管壁径向位移之比,讨论厚径比和品质因子对流体主导波传播的影响。结果表明,黏弹介质对流体主导波和管壁压缩波的相速度影响较小,但对衰减影响较大;流体主导波对管壁径向位移有较大的影响,是泄露噪声传播的主要载体;厚径比越大,流体主导波的相速度越大,衰减越小;而品质因子越大,流体主导波的频散和衰减都越小。研究结果可为埋地充液管道的泄漏检测提供一定的理论参考。   相似文献   
2.
为了研究孔隙介质圆柱纵向表面波的传播规律,分析其频散和衰减特性,在正交曲线坐标系下建立了表面波的频散方程,通过数值计算得到频散曲线,将纵向导波最低模态与表面波进行对比,并分析了曲率半径及孔隙参数对表面波频散和衰减的影响。结果表明,当频率足够大时,导波最低模态的频散曲线与表面波近似;在同一频率下,表面波的相速度随曲率半径的增大而增大,随孔隙度的增大而减小;表面波的衰减随孔隙度的增大而增大。研究结果为开展孔隙介质圆柱结构的超声无损评价提供了一定的理论参考。  相似文献   
3.
Le Bai 《中国物理 B》2022,31(3):34701-034701
A two-component lattice Boltzmann method (LBM) with a multiple-relaxation-time (MRT) collision operator is presented to improve the numerical stability of the single relaxation time (SRT) model. The macroscopic and the momentum conservation equations can be retrieved through the Chapman—Enskog (C-E) expansion analysis. The equilibrium moment with the diffusion term is calculated, a diffusion phenomenon is simulated by utilizing the developed model, and the numerical stability is verified. Furthermore, the binary mixture channel model is designed to simulate the sound attenuation phenomenon, and the obtained simulation results are found to be consistent with the analytical solutions. The sound attenuation model is used to study the numerical stability and calculation accuracy of the LBM model. The simulation results show the stability and accuracy of the MRT model and the SRT model under different viscosity conditions. Finally, we study the influence of the error between the macroscopic equation of the MRT model and the standard incompressible Navier—Stokes equation on the calculation accuracy of the model to demonstrate the general applicability of the conclusions drawn by the sound attenuation model in the present study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号