首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Cellulose nanocrystals (CNCs) are crystalline nano-rods that have high specific strength with hydroxyl surface chemistry. A wide range of chemical modifications have been performed on the surface of CNCs to increase their potential to be used in applications where compatibilization with other materials is required. Understanding the surface chemistry of CNCs and critically examining the functionalization technique are crucial to enable control over the extent of modification and the properties of CNCs. This work aims to optimize the surface modification of wood-derived CNCs with isocyanatoethyl methacrylate (IEM), a bifunctional molecule carrying both isocyanate and vinyl functional groups. We studied the effect of modification reaction time and temperature on the degree of substitution, crystallinity, and morphology of the CNCs. We found that the degree of modification is a strong and increasing function of reaction temperature over the range studied. However, the highest temperature (65 °C) and the longest time of reaction (6 h) resulted in shorter, thinner, and less crystalline CNCs. We obtained surface hydroxyl conversion of 60.1?±?6% and percent crystallinity of 84% by keeping the reaction shorter (30 min) at 65 ºC. Also, the copolymerization ability of modified CNCs was verified by polymerizing attached IEM groups with acrylic monomers via solution polymerization. The polymer-grafted CNCs (6% w/w) dispersed better in an acrylic polymer matrix compared to unmodified CNCs (umCNCs), resulting in approximately 100% improvement in the tensile strength and about 53% enhancement in the hardness of the acrylic, whereas addition of 6% w/w umCNCs did not influence the strength and hardness.

Graphic abstract
  相似文献   

2.

The present work aims to investigate the feasibility of oxalic acid-choline chloride deep eutectic solvent (OA-ChCl DES), which serves as a promising green solvent that utilized in the acidic deep eutectic solvent (DES) hydrolysis. Oxalic acid-choline chloride DES cellulose nanocrystal (OA-ChCl DES CNC) was isolated from the bleached DES treated pulp (BP) through the acidic DES hydrolysis using 1:1 molar ratio of OA-ChCl DES. The functional groups, crystallinity index, morphological structure, particle size, zeta potential, thermal stability and surface chemistry of the OA-ChCl DES CNC were compared with the sulphuric acid cellulose nanocrystal (SA-CNC) that prepared via sulphuric acid hydrolysis. The findings revealed the presence of negatively charged carboxyl groups on OA-ChCl DES CNC surface after the acidic DES hydrolysis. The physicochemical analyses verified that the OA-ChCl DES CNC was in nano-sized range with polydispersity index (PdI) of 0.56, indicating slightly monodispersed nanoparticles. A stable OA-ChCl DES CNC colloidal suspension with zeta potential value of ?52.1?±?5.2 mV was obtained. The OA-ChCl DES CNC outweighed the SA-CNC in term of thermal stability (288 °C) despite having a slightly lower crystallinity index (76.7%). In fact, the OA-ChCl DES CNC with a yield of 55.1% was achieved through the acidic DES hydrolysis, suggesting that the OA-ChCl DES was capable of promoting efficient cleavage of strong hydrogen bonds in BP.

Graphic abstract
  相似文献   

3.
Gao  Qian  Wang  Jiabao  Liu  Jing  Wang  Yuda  Guo  Jinge  Zhong  Ziyi  Liu  Xinliang 《Cellulose (London, England)》2021,28(12):7995-8008

Cellulose nanocrystals (CNCs) with high crystallinity exhibit high mechanical stiffness and strength. However, the high dispersibility of CNCs results in limited spinnability and orientation. In this study, oxidized nanocellulose was selected to obtain regionally oxidized CNCs (RO-CNC) with carboxyl groups appended. For the formation of orientable and extensible RO-CNC filaments, chitosan was introduced as the sheath solution to induce orientation by electrostatic action. The chemical structures were analyzed by Fourier transform infrared spectroscopy. The morphology of the oriented CNCs filaments was characterized by scanning electron microscopy and wide-angle X-ray scattering. Analysis of the relationship between the mechanical strength and the CNCs directional arrangement revealed that the mechanical strength of the composite fibers increased with the injection speed ratio as a result of the orientation of the RO-CNC. The mechanical strength of the oriented reinforced composite filaments reached as high as 104 MPa with an orientation index of 0.73. The tensile strength and elastic modulus of the filaments increased by 33% and 20%, respectively, compared to the unmodified CNCs spun fiber.

Graphic abstract
  相似文献   

4.

The horse chestnut seed shell (HC) and chestnut seed shell (CT) were evaluated as renewable, sustainable, and cheap raw materials transformed into valuable products, “cellulose nanocrystals (CNCs).” Alkali and bleaching treatments were performed to obtain horse chestnut cellulose (HCS) and chestnut cellulose (CTS) and subsequently isolated to the horse chestnut cellulose nanocrystal (HC-CNC) and chestnut cellulose nanocrystal (CT-CNC) by sulphuric acid hydrolysis. Raw materials and their products were comparatively investigated at each stage of the isolation process. The cellulose, hemicellulose, and lignin content of HC and CT were determined via chemical composition analysis. The structural analysis was performed using Fourier transform infrared spectroscopy and X-ray diffraction technics for CNCs. Morphological analysis and size range determination of the samples were carried out via atomic force microscopy (AFM) and particle size analysis. Zeta potential and particle size distribution were determined by analyzing the surface and particle size. The thermal behaviors were investigated at different phases of treatments using thermal gravimetric analysis (TGA/DTG). HC-CNC demonstrates a higher crystallinity index value of 85.49% and a lower yield of 20.46%, whereas CT-CNC shows a lower crystallinity of 65.06% and a higher yield of 36.59%. A differentiation in structural, thermal, and morphological properties of extracted celluloses and isolated CNCs was observed depending on the source of the raw materials. However, a morphological alteration in CNC structures has emerged relative to precursor cellulose after the acid hydrolysis process as an essential finding via AFM studies. The solid wastes horse chestnut and chestnut seed shells offer great potential as suitable, sustainable, and environmentally friendly starting raw materials to produce CNC and in applications, including wastewater treatments, biosensing, wound dressing, and reinforcement for polymer composites due to their excellent thermal and structural properties.

Graphical abstract
  相似文献   

5.

Bacterial cellulose (BC) is a polymer with interesting conformation and properties. BC can be obtained in different shapes and is easily modified by chemical and physical means, so its applications in the production of new materials and nanocomposites for different purposes have been in the focus of many research projects. However, one of the major challenges to address in bacterium-derived polymer technology is to find suitable carbon sources as substrates that are cheap and do not compete with food production for achieving large scale industrial applications. Agricultural wastes are defined as the residues from the growing and processing of raw agricultural products such as crops, fruits, vegetables and dairy products. Their composition can vary depending on the type of agricultural activity and harvesting conditions, but these residues are suitable for the production of BC. The aim of this review is to give insight into the production of BC using agro-wastes and an overview of the most interesting and novel applications of this biopolymer in different areas i.e. environmental applications, optoelectronic and conductive devices, food ingredients and packaging, biomedicine, and 3D printing technology.

Graphic abstract
  相似文献   

6.

The development of Pickering emulsions as ecologically correct stabilized with bio-based material by substituting synthetic petroleum-derived tensoactives assumed a very attractive level, representing the current guideline of the global market for homecare industry, food and beverage applications. In this wor, cellulose nanocrystals (CNCs), a hierarchically advanced biomaterial, were produced to stabilize innovative emulsions formulated with western soapberry Sapindus saponaria L. oil (SO). Besides, green surfactants (triterpene saponins extracted from S. saponaria L. pericarp; SAP) were also investigated to stabilize the oil/water interface. The synergistic combination between cellulose nanowhiskers and the bioactive glycosides has never been reported in the literature. Dynamic interfacial tensions of SAP and SO were firstly investigated, and their capacity to form a plastic membrane at oil/water interface was revealed. Response surface methodology (RSM) was employed to study the influence of the binary systems (CNC:SAP) on the stability of emulsified systems, such as size and zeta potential. In addition, a new calculation was proposed to determine the coverage of the oil droplets formed by the mixture of cellulose crystallites and natural surfactants. The optimal nanoemulsion composition was determined to be 60 w/w (%) of water, 23.905 w/w % of SO, 5 w/w % of CNC and 8.095 w/w% of SAP to produce of smallest droplet (165.1 nm) combined with higher zeta potential module (?46.7 mV). Results highlight the potential of Sapindus saponins and cellulose nanowhiskers for efficient producing label-friendly nanoemulsions applicable for drug, cosmeceutical or edible delivery systems.

Graphical abstract
  相似文献   

7.

In this paper, we developed a microbial route to fabricate wood-inspired biomimetic composites comparable to natural wood. Focusing on the chemical composition of woody biomass, we performed in situ bioprocessing of bacterial cellulose (BC) imbibed in modified cationic lignin (Catlig), which exhibited significant bioactivity in improving the microbial growth dynamics. The structural and morphological characteristics were enhanced by the formation of hydrophobic and electrostatic interactions between BC and Catlig during biosynthesis. Microbially derived BC/Catlig composites exhibited enhanced thermal stability and crystallinity, with oriented cellulose fibers. The tensile properties, toughness, and specific strength of BC/Catlig composites were comparable to those of a heavy wood species (Zelkova serrata) under hydrated conditions and synthetic soft materials.

Graphic abstract
  相似文献   

8.

Life-threatening diseases, especially those caused by pathogens and harmful ultraviolet radiation (UV-R), have triggered increasing demands for comfortable, antimicrobial, and UV-R protective clothing with a long service life. However, developing such textiles with exceptional wash durability is still challenging. Herein, we demonstrate how to fabricate wash durable multifunctional cotton textiles by growing in situ ZnO-TiO2 hybrid nanocrystals (NCs) on the surface of cellulosic fabrics. The ZnO-TiO2 hybrid NCs presented high functional efficiency, owing to their high charge transfer/separation. Ultrafine fiber surface pores, utilized as nucleating sites, endowed the uniform growth of NCs and their physical locking. The resulting fabrics presented excellent UV protection factors up to 54, displayed bactericidal efficiency of 100% against Staphylococcus aureus and Escherichia coli, and optimum self-cleaning efficacy. Moreover, the functionalized textiles exhibited robust washing durability, maintaining antibacterial and anti-UV-R efficiency even after 30 extensive washing cycles.

Graphical abstract
  相似文献   

9.

Ionic cellulose nanocrystals (CNCs) are interesting surface-active particles for encapsulating a lipophilic liquid in water. A CNC is modified chemically to a negative charge (an S-CNC) by surface treatment with sulfuric acid. Despite the amphiphilic nature of S-CNCs, it is difficult to determine the degree of substitution for emulsification of lipophilic liquids, especially when the surface energy is low and polarity is high. Here, we control the substitution of S-CNCs by desulfation of S-CNCs (dS-CNCs) using a low-concentration hydrochloric acid solution. Decreased surface charge of S-CNCs was expected, and the lipophilic affinity of dS-CNCs increased compared with those of S-CNCs. Six oils with differing surface tensions were selected for determination of the effect of charged CNCs on emulsification. The stability of the emulsion was evaluated by emulsion fraction, emulsion particle size, and surface tension of emulsified solutions from dS-CNCs and oils.

Graphical abstract
  相似文献   

10.
Han  Fuyi  Huang  Hong  Wang  Yan  Liu  Lifang 《Cellulose (London, England)》2021,28(17):10987-10997

Cellulose nanofibril (CNF) aerogels have attracted great interests in recent years due to the low cost, sustainability and biocompatibility of raw CNF. However, the poor thermal stability and flammable feature of CNF aerogels have limited their wider applications. In this paper, polydopamine/CNF composite aerogels with good comprehensive properties are fabricated by modification of CNF with polydopamine and metal coordination bonds crosslinking. The microstructure and properties of composite aerogels are thoroughly characterized by a variety of tests. It is found that the microstructure of aerogels are more regular and the compressive strength of aerogels are enhanced by the incorporation of polydopamine and Fe3+ crosslinking. Importantly, the thermal stability and flame resistance of aerogels are significantly improved, which permit the application of composite aerogels in high-temperature thermal insulation. In addition, the reversible characteristic of metal coordination bonds allows the water induced healing of fractured composite aerogels. This study is expected to provide information for future development of green and high-performance aerogels.

Graphic abstract
  相似文献   

11.

Foams are mainly composed of dispersed gas trapped in a liquid or solid phase making them lightweight and thermally insulating materials. Additionally, they are applicable for large surfaces, which makes them attractive for thermal insulation. State-of-the-art thermally insulating foams are made of synthetic polymeric materials such as polystyrene. This work focuses on generating foam from surfactants and renewable lignocellulosic materials for thermally insulating stealth material. The effect of two surfactants (sodium dodecyl sulphate (SDS) and polysorbate (T80)), two cellulosic materials (bleached pulp and nanocellulose), and lignin on the foaming and stability of foam was investigated using experimental design and response surface methodology. The volume-optimized foams determined using experimental design were further studied with optical microscopy and infrared imaging. The results of experimental design, bubble structure of foams, and observations of their thermal conductivity showed that bleached pulp foam made using SDS as surfactant produced the highest foam volume, best stability, and good thermal insulation. Lignin did not improve the foaming or thermal insulation properties of the foam, but it was found to improve the structural stability of foam and brought natural brown color to the foam. Both wet and dry lignocellulosic foams provided thermal insulation comparable to dry polystyrene foam.

Graphical abstract
  相似文献   

12.
Wang  Junjie  Yu  Xuejun  Dai  Shengsong  Wang  Xinyu  Pan  Zhiquan  Zhou  Hong 《Cellulose (London, England)》2022,29(2):907-925

In this work, the effects of a chitosan-based derivative (CSA), DOPO (9, 10-dihydro-9-oxa-10- phosphaphenanthreene-10-oxide) and CSA-DOPO additives on the flammable properties of EP (epoxy resin) composites were systematically studied, where CSA was synthesized by a facile condensation between chitosan (CS) and 9-anthralaldehyde. The mass ratio of CS and 9-anthralaldehyde in CSA was determined by elemental analysis and theoretical calculation. Under the 8% addition in EP, EP/2.66%/5.34%DOPO sample was the only one passing the UL-94 V-0 rating and exhibiting the highest LOI value of 36.4%. The cone calorimeter test (CC) showed that the total smoke emission value and the peak heat release rate of the EP/2.66%/5.34%DOPO decreased by 36.0% and 61.9%, and the residual char amount increased by 151%, respectively, when compared with EP. Moreover, the incorporation of CSA/DOPO effectively improved the flexural strength by 52.3%. According to the results obtained from Py-GC/MS analyses for EP and EP/2.66%CSA/5.34%DOPO samples, together with Raman spectra, XPS (X-ray photoelectron spectra) for their char residues, and the real time FTIR (Fourier-transform infrared) spectra at different pyrolysis temperatures and cone calorimeters, it was proposed that CSA/DOPO played roles in both gaseous and condensed phases, and the synergistic effect of CSA and DOPO significantly improved the flame retardancy and mechanical strength of EP.

Graphical abstract
  相似文献   

13.

Oceans and soils have been contaminated with traditional plastic due to its lack of degradability. Therefore, green biopolymer composites reinforced with cellulose nanocrystal-zinc oxide hybrids (ZnO hybrids) with good biodegradation ability provided a positive impact on reducing environmental challenges. In this work, the effect of various morphologies of ZnO hybrids on the biodegradation ability of poly(butylene adipate-co-terephthalate), PBAT) under seawater, soil burial, and UV aging conditions were investigated. Sheet-like ZnO hybrids (s-ZnO hybrid) efficiently enhanced the mechanical, UV-blocking properties and biodegradation ability of PBAT nanocomposite films. Compared to neat PBAT, the best tensile strength of PBAT nanocomposite with 2 wt% s-ZnO hybrid was increased by 15.1%, meanwhile this nanocomposite films showed the highest biodegradation rate after 80 days of soil degradation and 90 days of seawater degradation. Besides, three possible biodegradation mechanisms of green PBAT nanocomposite films were presented, hinting that such PBAT nanocomposite have great promising packaging applications.

Graphic abstract
  相似文献   

14.

An efficient and convenient procedure for the synthesis of novel 6-hydroxy-14-aryl-8H-dibenzo[a,i]xanthene-8,13(14H)-dione derivatives has been developed by one-pot, three-component condensation reaction between 2-hydroxynaphthalene-1,4-dione, aromatic aldehydes and 2,3-naphthalenediol in glacial acetic acid under reflux conditions. This domino reaction implies Knoevenagel condensation, Michael addition, intramolecular cyclization and dehydration. The reaction avoids tedious workup procedure due to the direct precipitation of products from the reaction medium. The notable features of this domino transformation are operational simplicity, clean reaction, easy handling, easy purification process and high yields of the products.

Graphical abstract
  相似文献   

15.

The development of a simple surface barrier discharge plasma device is presented to enable more widespread access to and utilization of plasma technology. The application of the plasma device was demonstrated for pretreatment of wood prior to application of protective coatings for outdoor usage. The coatings' overall performance was increased, showing a reduction or absence of cracking due to weathering on plasma-pretreated specimens. Moreover, after ten months of outdoor weathering, the plasma-pretreated specimens showed fewer infections with biotic factors and improved adhesion performance in cross-cut tests, while the surface gloss performed independently from plasma pretreatment. In contrast to that, plasma-pretreated specimens were slightly more prone to discoloration due to outdoor weathering, whereas the plasma pretreatment did not impact the initial color after coating application.

Graphic abstract
  相似文献   

16.
Wei  Yuyi  Dai  Zhenhua  Zhang  Yanfei  Zhang  Weiwei  Gu  Jin  Hu  Chuanshuang  Lin  Xiuyi 《Cellulose (London, England)》2022,29(10):5883-5893

Increasing electromagnetic pollution calls for electromagnetic interference (EMI) shielding materials, especially sustainable, lightweight, and environmentally stable, biomass-based materials. MXene-coated wood (M/wood) is prepared by simply spraying MXene sheets on the wood surface. Varying this spray coating manipulates the shielding performance and its application to different wood species. The M/wood exhibits high electrical conductivity (sheet resistance is only 0.65 Ω/sq) with an excellent EMI shielding effectiveness of 31.1 dB at 8.2?~?12.4 GHz and is also fire retardant. Furthermore, waterborne acrylic resin (WA) is coated on M/wood to enhance environmental stability. The WA coating improves EMI shielding performance stability after water-soaking and drying testing and prevents the peeling of MXene from wood. These satisfactory properties of WA-M/wood and the facile manufacturing approach promote the feasibility of wood-based EMI shielding materials.

Graphical abstract
  相似文献   

17.
Cai  Chenchen  Luo  Bin  Liu  Tao  Gao  Cong  Zhang  Wanglin  Chi  Mingchao  Meng  Xiangjiang  Nie  Shuangxi 《Cellulose (London, England)》2022,29(13):7139-7149

A variety of liquid energy exists in papermaking engineering and has not yet been developed and utilized. In addition, for the papermaking industry, the presence of slime can seriously affect the quality of the finished paper and can lead to paper breaking. The current slime control strategies cannot completely solve the problem and also have some low toxicity. In this study, a method of self-powered sterilization of cellulose fibers by using triboelectric pulsed direct current is reported. A liquid–solid triboelectric nanogenerator (L–S TENG) was used to convert the liquid energy of nanocellulose suspension into electrical energy and convert this electrical energy into pulsed direct current for self-powered sterilization of cellulose fiber. A hydrophobic coating material is used as solid triboelectric material and electrode for sterilization. Driven by L–S TENG, the electrodes exhibited an excellent sterilization rate against four microorganisms including Escherichia coli, Aspergillus niger, Candida albicans, and Klebsiella pneumoniae, which from slime in the papermaking industry. This study could provide a basic research theory for liquid energy harvesting in the papermaking industry, and also provide a new strategy for pulp sterilization.

Graphical abstract
  相似文献   

18.

In this, an efficient flame retardant composite has been prepared using biowaste derived phosphorous groups decorated graphene supported nanomaterial. The eggshell was utilized as a source of calcium carbonate, which was converted to monocalcium phosphate (CP) by phosphoric acid treatment. As-prepared monocalcium phosphate was functionalized with graphene to prepare graphene functionalized monocalcium phosphate (GCP). The GCP-coated fabric didn't ignite during the flame test and sustained more than 600 s on continuous exposure to flame without changing its initial length and shape. Whereas, graphene oxide (GO), and CP coated cotton fabric burnt out very easily within a short time. The efficient flame retardant property of as synthesized GCP coated cotton fabric was confirmed with a high limiting oxygen index (34.1) and char length of 2.5 cm was generated from the VFT test. The synthesized GCP coated cotton fabric also confirmed efficient flame retardant properties. This facile method enables an easy process for mass production of cost-effective, bio-waste derived nanomaterial for a significantly highly efficient candidate for different applications in sustainable chemistry, including flame-retardant applications.

Graphical abstract
  相似文献   

19.
Li  Shuai  Yang  Xiaochun  He  Yingying  Wang  Yanan  Liao  Daogui  Chen  Yunhua  Xie  Huihong  Liu  Hongxia  Zhou  Li 《Cellulose (London, England)》2022,29(2):953-966

An integrated aero-cryogel (A-CG) monolith with hierarchical porous structure was developed by inter-crosslinking of cellulose nanofiber/polylactic acid nanocomposite aerogel and carboxymethyl cellulose (CMC) cryogel (CG). The photothermal nanoparticles-enriched CMC CG phase served as a sunlight absorbing layer, exhibiting a broadband sunlight absorption of 98%. Due to the large amount of weakly bounded water molecules, the swelled CMC CG possessed a lower evaporation enthalpy than that of pure water, which facilitates water evaporation, while the nanocomposite aerogel phase acted as an excellent thermal insulator and afforded highly efficient water transport channels. Thus, the developed A-CG monolith supported by insulated polystyrene foam to protrude above the water surface, could reach an evaporation rate of 2.16 kg m?2 h?1 under an irradiation of 1 Sun (100 mw/cm2) with an efficiency of 93.6%. More remarkably, when the wind energy was imparted, an evaporation rate of 5.67 kg m?2 h?1 was achieved at a wind speed of 3 m s?1. The high-efficiency purification outcomes of various raw water demonstrate the great potentials of A-CG material in solar vapor generation.

Graphical abstract
  相似文献   

20.

Vulcanized fibers are all-cellulose materials made from cotton and/or wood cellulose after aqueous zinc chloride treatment. These materials were invented in the UK in the mid-nineteenth century and is widely used because of their excellent characteristics, such as impact resistance and electrical insulation. Recently the matured vulcanized fibers have been recognized as renewable and biodegradable materials and reevaluated with advanced cellulose technologies derived from cellulose nanofibers (CNFs) and all-cellulose composites. The microscopic analysis based on the improved freeze-drying method revealed that the strength of vulcanized fiber sheets can be attributed to the chemically defibrillated CNFs. The architecture is similar to all-cellulose composites made from the same raw materials in which the residual cellulose fibers serve as reinforcement, and the CNFs serve as adhesives or matrix components. In this report, we describe the history and structural characteristics of vulcanized fibers and introduce a new aspect in aqueous zinc chloride treatment of cellulose.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号