首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.

Arrowroot starch (AA)-based films incorporated with a carnauba wax nanoemulsion (CWN), cellulose nanocrystals (CNCs), and essential oils (EOs) from Mentha spicata (MEO) and Cymbopogon martinii (CEO) were produced using the casting technique and then characterized in terms of their water barrier, tensile, thermal, optical, and microstructural properties and in vitro antifungal activity against Rhizopus stolonifer and Botrytis cinerea. Whereas the incorporation of CNCs decreased the moisture content and water vapor permeability of the AA/CWN/CNC film, the additional incorporation of either EO decreased the transparency and affected the microstructure of the AA/CWN/CNC/EO nanocomposites. MEO and CEO incorporation improved the thermal stability of the films and provided excellent protection against fruit-spoiling fungi. Because of their excellent barrier properties against fungal growth, water vapor permeability, and ultraviolet and visible light, these AA/CWN/CNC/EO films have promising potential for application as active food packaging or coating materials.

Graphic abstract
  相似文献   

2.

Vulcanized fibers are all-cellulose materials made from cotton and/or wood cellulose after aqueous zinc chloride treatment. These materials were invented in the UK in the mid-nineteenth century and is widely used because of their excellent characteristics, such as impact resistance and electrical insulation. Recently the matured vulcanized fibers have been recognized as renewable and biodegradable materials and reevaluated with advanced cellulose technologies derived from cellulose nanofibers (CNFs) and all-cellulose composites. The microscopic analysis based on the improved freeze-drying method revealed that the strength of vulcanized fiber sheets can be attributed to the chemically defibrillated CNFs. The architecture is similar to all-cellulose composites made from the same raw materials in which the residual cellulose fibers serve as reinforcement, and the CNFs serve as adhesives or matrix components. In this report, we describe the history and structural characteristics of vulcanized fibers and introduce a new aspect in aqueous zinc chloride treatment of cellulose.

Graphical abstract
  相似文献   

3.

In this paper, we developed a microbial route to fabricate wood-inspired biomimetic composites comparable to natural wood. Focusing on the chemical composition of woody biomass, we performed in situ bioprocessing of bacterial cellulose (BC) imbibed in modified cationic lignin (Catlig), which exhibited significant bioactivity in improving the microbial growth dynamics. The structural and morphological characteristics were enhanced by the formation of hydrophobic and electrostatic interactions between BC and Catlig during biosynthesis. Microbially derived BC/Catlig composites exhibited enhanced thermal stability and crystallinity, with oriented cellulose fibers. The tensile properties, toughness, and specific strength of BC/Catlig composites were comparable to those of a heavy wood species (Zelkova serrata) under hydrated conditions and synthetic soft materials.

Graphic abstract
  相似文献   

4.

Cellulose nanocrystals (CNCs) are crystalline nano-rods that have high specific strength with hydroxyl surface chemistry. A wide range of chemical modifications have been performed on the surface of CNCs to increase their potential to be used in applications where compatibilization with other materials is required. Understanding the surface chemistry of CNCs and critically examining the functionalization technique are crucial to enable control over the extent of modification and the properties of CNCs. This work aims to optimize the surface modification of wood-derived CNCs with isocyanatoethyl methacrylate (IEM), a bifunctional molecule carrying both isocyanate and vinyl functional groups. We studied the effect of modification reaction time and temperature on the degree of substitution, crystallinity, and morphology of the CNCs. We found that the degree of modification is a strong and increasing function of reaction temperature over the range studied. However, the highest temperature (65 °C) and the longest time of reaction (6 h) resulted in shorter, thinner, and less crystalline CNCs. We obtained surface hydroxyl conversion of 60.1?±?6% and percent crystallinity of 84% by keeping the reaction shorter (30 min) at 65 ºC. Also, the copolymerization ability of modified CNCs was verified by polymerizing attached IEM groups with acrylic monomers via solution polymerization. The polymer-grafted CNCs (6% w/w) dispersed better in an acrylic polymer matrix compared to unmodified CNCs (umCNCs), resulting in approximately 100% improvement in the tensile strength and about 53% enhancement in the hardness of the acrylic, whereas addition of 6% w/w umCNCs did not influence the strength and hardness.

Graphic abstract
  相似文献   

5.
Gao  Qian  Wang  Jiabao  Liu  Jing  Wang  Yuda  Guo  Jinge  Zhong  Ziyi  Liu  Xinliang 《Cellulose (London, England)》2021,28(12):7995-8008

Cellulose nanocrystals (CNCs) with high crystallinity exhibit high mechanical stiffness and strength. However, the high dispersibility of CNCs results in limited spinnability and orientation. In this study, oxidized nanocellulose was selected to obtain regionally oxidized CNCs (RO-CNC) with carboxyl groups appended. For the formation of orientable and extensible RO-CNC filaments, chitosan was introduced as the sheath solution to induce orientation by electrostatic action. The chemical structures were analyzed by Fourier transform infrared spectroscopy. The morphology of the oriented CNCs filaments was characterized by scanning electron microscopy and wide-angle X-ray scattering. Analysis of the relationship between the mechanical strength and the CNCs directional arrangement revealed that the mechanical strength of the composite fibers increased with the injection speed ratio as a result of the orientation of the RO-CNC. The mechanical strength of the oriented reinforced composite filaments reached as high as 104 MPa with an orientation index of 0.73. The tensile strength and elastic modulus of the filaments increased by 33% and 20%, respectively, compared to the unmodified CNCs spun fiber.

Graphic abstract
  相似文献   

6.

Ionic cellulose nanocrystals (CNCs) are interesting surface-active particles for encapsulating a lipophilic liquid in water. A CNC is modified chemically to a negative charge (an S-CNC) by surface treatment with sulfuric acid. Despite the amphiphilic nature of S-CNCs, it is difficult to determine the degree of substitution for emulsification of lipophilic liquids, especially when the surface energy is low and polarity is high. Here, we control the substitution of S-CNCs by desulfation of S-CNCs (dS-CNCs) using a low-concentration hydrochloric acid solution. Decreased surface charge of S-CNCs was expected, and the lipophilic affinity of dS-CNCs increased compared with those of S-CNCs. Six oils with differing surface tensions were selected for determination of the effect of charged CNCs on emulsification. The stability of the emulsion was evaluated by emulsion fraction, emulsion particle size, and surface tension of emulsified solutions from dS-CNCs and oils.

Graphical abstract
  相似文献   

7.

We study the thermal decomposition of cellulose using molecular simulations based on the ReaxFF reactive force field. Our analysis focuses on the mechanism and kinetics of chain scission, and their sensitivity on the condensed phase environment. For this purpose, we simulate the thermal decomposition of amorphous and partially crystalline cellulose at various heating rates. We find that thermal degradation begins with depolymerization via glycosidic bond cleavage, and that the order of events corresponds to a randomly initiated chain reaction. Depolymerization is followed by ring fragmentation reactions that lead to the formation of a number of light oxygenates. Water is formed mainly in intermolecular dehydration reactions at a later stage. The reaction rate of glycosidic bond cleavage follows a sigmoidal reaction model, with an apparent activation energy of 166?±?4 kJ/mol. Neither the condensed phase environment nor the heating programme have appreciable effects on the reactions. We make several observations that are compatible with mechanisms proposed for cellulose fast pyrolysis. However, due to the absence of anhydrosugar forming reactions, the simulations offer limited insight for conditions of industrial interest. It remains unclear whether this is a natural consequence of the reaction conditions, or a shortcoming of the force field or its parameter set.

Graphic abstract
  相似文献   

8.

Millions of tons of fruit waste are generated globally every year from agricultural residues, which makes it essential to find alternative uses to increase their aggregate value and reduce their environmental impact. The present study aimed to explore pineapple peel as an alternative source of cellulose by evaluating its chemical composition and physical properties, which are essential for applications. A sequence of chlorine-free treatments was applied to purify the cellulose by removing noncellulosic components in the fresh pineapple peels. The cellulosic pulp was characterized regarding its chemical composition and characterized by Nuclear Magnetic Resonance (13C NMR), X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis to determine crystallinity, structural properties, morphology, and thermal characteristics, respectively. The results revealed that the pineapple peel amorphous segments containing hemicelluloses and lignin were extensively removed with increasing chemical treatment steps, leading to increased purity, crystallinity index, and thermal stability of the extracted cellulose pulps. The maximum thermal degradation (150 °C) and crystallinity index (80.9%) were determined for the cellulosic material obtained from the second bleaching (2B) step. The cellulose content increased from 24% in the starting material (fresh pineapple peel) to 80.9% in the bleached cellulose (2B). These results indicate that the extracted cellulose from pineapple peel has characteristic for applications such as the production of cellulose nanocrystals due to the high crystallinity.

Graphical abstract
  相似文献   

9.
Zhu  Qiuxiao  Wang  Tingting  Wei  Yuhe  Sun  Xiaoping  Zhang  Sheng  Wang  Xuchong  Luo  Lianxin 《Cellulose (London, England)》2022,29(16):8733-8747

Cellulose-based triboelectric nanogenerators (TENGs) can provide power for various monitoring devices and are environmentally friendly and sustainable. Chemical functional modification is a common method to improve the electrical output performance of cellulose-based TENGs. In this work, an environmentally friendly high-performance triboelectric nanogenerator based on a polydopamine/cellulose nanofibril (PDA/CNF) composite membrane and fluorinated ethylene propylene was developed. Dopamine generates polydopamine nanoparticles through oxidative self-polymerization and adheres to the surface of nanofibers. The synergistic effect of amino group introduction and membrane surface microstructure effectively enhanced the output performance of TENGs to a certain extent. The effects of PDA content, CNF composite film thickness and different working conditions on the electrical output were systematically investigated. The optimized PDA/CNF-TENGs exhibited an enhanced electrical output performance with voltage, current, and power density values of ≈205 V, ≈20 µA, and ≈48.75 μW·cm?2, respectively. The PDA/CNF-TENGs exhibited stable and identifiable signals when used as a self-powered sensor for human motion monitoring, showing the potential prospects of cellulose materials for TENGS and other electronic applications.

Graphical abstract
  相似文献   

10.
Gu  Bin  Qiu  Fengxian  Yang  Dongya  Zhang  Tao 《Cellulose (London, England)》2022,29(2):1219-1230

Agricultural waste pollution, one of the serious issues faced by human society, has aroused global attention to environmental sustainability. Resource utilization of agricultural waste is of great significance for the development of energy saving and environmentally friendly materials to settle enormous agricultural waste. Herein, the concept of “turning waste into treasure” was proposed in resource utilization of agricultural waste: biomass cellulose derived from corn bracts was used to fabricate wearable Janus membranes for personal thermoregulation application. Wearable Janus membranes composed of zinc oxide nanosheets layer (ZnO-NSs/CBM) and copper nano-coating layer (Cu-NC/CBM) were prepared using corn bracts cellulose membrane (CBM) as the substrate by hydrothermal method and the subsequent magnetron sputtering technique. More importantly, ZnO-NSs/CBM side has high infrared emissivity and visible reflectivity, which is conducive to releasing a mass of human radiation and enhancing the reflection of sunlight. Janus membranes can achieve radiation cooling when ZnO-NSs/CBM faces outwards. Moreover, Cu-NC/CBM side exhibits low infrared emissivity, which helps to return infrared radiation back to the human body. Janus membranes can access radiation insulation effect when Cu-NC/CBM side faces outwards. In addition, wearable Janus membranes with multi-functionality show an outstanding UV resistance, air permeability, flexibility and mechanical property to offer comfort for the wearer. This study not only provides a waste-to-resource strategy to fabricate wearable Janus membranes by using agricultural waste as raw materials but also demonstrates intriguing applications in personal thermal management thanks to its energy conservation and environmental friendliness.

Graphical abstract

The concept of “turning waste into treasure” was proposed in agricultural resource utilization: cellulose from corn bracts was extracted to fabricate wearable Janus membranes for personal thermoregulation application.

  相似文献   

11.

The development of Pickering emulsions as ecologically correct stabilized with bio-based material by substituting synthetic petroleum-derived tensoactives assumed a very attractive level, representing the current guideline of the global market for homecare industry, food and beverage applications. In this wor, cellulose nanocrystals (CNCs), a hierarchically advanced biomaterial, were produced to stabilize innovative emulsions formulated with western soapberry Sapindus saponaria L. oil (SO). Besides, green surfactants (triterpene saponins extracted from S. saponaria L. pericarp; SAP) were also investigated to stabilize the oil/water interface. The synergistic combination between cellulose nanowhiskers and the bioactive glycosides has never been reported in the literature. Dynamic interfacial tensions of SAP and SO were firstly investigated, and their capacity to form a plastic membrane at oil/water interface was revealed. Response surface methodology (RSM) was employed to study the influence of the binary systems (CNC:SAP) on the stability of emulsified systems, such as size and zeta potential. In addition, a new calculation was proposed to determine the coverage of the oil droplets formed by the mixture of cellulose crystallites and natural surfactants. The optimal nanoemulsion composition was determined to be 60 w/w (%) of water, 23.905 w/w % of SO, 5 w/w % of CNC and 8.095 w/w% of SAP to produce of smallest droplet (165.1 nm) combined with higher zeta potential module (?46.7 mV). Results highlight the potential of Sapindus saponins and cellulose nanowhiskers for efficient producing label-friendly nanoemulsions applicable for drug, cosmeceutical or edible delivery systems.

Graphical abstract
  相似文献   

12.

Foams are mainly composed of dispersed gas trapped in a liquid or solid phase making them lightweight and thermally insulating materials. Additionally, they are applicable for large surfaces, which makes them attractive for thermal insulation. State-of-the-art thermally insulating foams are made of synthetic polymeric materials such as polystyrene. This work focuses on generating foam from surfactants and renewable lignocellulosic materials for thermally insulating stealth material. The effect of two surfactants (sodium dodecyl sulphate (SDS) and polysorbate (T80)), two cellulosic materials (bleached pulp and nanocellulose), and lignin on the foaming and stability of foam was investigated using experimental design and response surface methodology. The volume-optimized foams determined using experimental design were further studied with optical microscopy and infrared imaging. The results of experimental design, bubble structure of foams, and observations of their thermal conductivity showed that bleached pulp foam made using SDS as surfactant produced the highest foam volume, best stability, and good thermal insulation. Lignin did not improve the foaming or thermal insulation properties of the foam, but it was found to improve the structural stability of foam and brought natural brown color to the foam. Both wet and dry lignocellulosic foams provided thermal insulation comparable to dry polystyrene foam.

Graphical abstract
  相似文献   

13.
Zhang  Xueqin  Guo  Haoqi  Xiao  Naiyu  Ma  Xinye  Liu  Chuanfu  Zhong  Le  Xiao  Gengsheng 《Cellulose (London, England)》2022,29(8):4413-4426

This study introduces an effective route to fabricate chitosan (CS)-based film. The films were prepared through cross-linking reaction between CS and hydroxyethyl cellulose (HEC) using epichlorohydrin (ECH) as the cross-linker and simultaneously in-situ loading with CuO nanoparticles. FT-IR and loading efficiency results indicated the occurrence of inter- and intra-molecular cross-linking reaction between CS and HEC. XRD and EDS analyses showed that the CuO nanoparticles were evenly deposited onto CS film matrixes. SEM characterization showed that the films were of compact, dense and uniform cross morphologies, as well as obvious voids. The films also exhibited desired swelling ratio and water vapor permeability. The enhanced tensile strength was obtained with a maximum value of 77.02?±?3.26 MPa, while the stretch-ability slightly decreased. The thermal stability of the films decreased after cross-linking with HEC. The antibacterial ability of the films was generally improved with the increase of HEC and ECH contents.

Graphical abstract

Preparation and properties of epichlorohydrin-cross-linked chitosan/hydroxyethyl cellulose based CuO nanocomposite films

  相似文献   

14.

Fabricating mechanically strong hydrogels that can withstand the conditions in internal tissues is a challenging task. We have designed hydrogels based on multicomponent systems by combining chitosan, starch/cellulose, PVA, and PEDOT:PSS via one-pot synthesis. The starch-based hydrogels were homogeneous, while the cellulose-based hydrogels showed the presence of cellulose micro- and nanofibers. The cellulose-based hydrogels demonstrated a swelling ratio between 121 and 156%, while the starch-based hydrogels showed higher values, from 234 to 280%. Tensile tests indicated that the presence of starch in the hydrogels provided high flexibility (strain at break?>?300%), while combination with cellulose led to the formation of stiffer hydrogels (elastic moduli 3.9–6.6 MPa). The ultimate tensile strength for both types of hydrogels was similar (2.8–3.9 MPa). The adhesion and growth of human osteoblast-like SAOS-2 cells was higher on hydrogels with cellulose than on hydrogels with starch, and was higher on hydrogels with PEDOT:PSS than on hydrogels without this polymer. The metabolic activity of cells cultivated for 3 days in the hydrogel infusions indicated that no acutely toxic compounds were released. This is promising for further possible applications of these hydrogels in tissue engineering or in wound dressings.

Graphical abstract
  相似文献   

15.

Uniformly-sized porous cellulose beads functionalized with amidoxime groups were prepared for the first time using a microfluidic method with N-methylmorpholine N-oxide (NMMO) monohydrate as a cellulose solvent. The molten state cellulose dope in NMMO monohydrate (cell/NMMO dope) as a disperse phase and hot mineral oil as a continuous phase were used in a T-junction microfluidic chip to produce uniformly-sized cell/NMMO droplets. Coagulation of the molten state cell/NMMO droplet at high temperature and amidoxime functionalization could prepare the highly-porous spherical amidoxime-functionalized cellulose beads with a uniform fibrous open internal structure. The prepared amidoxime-functionalized cellulose beads showed excellent metal adsorption properties with a maximum adsorption capacity of?~?80 mg g?1 in the case of Cu2+/phthalate ions. The newly developed highly-porous cellulose beads can open many new applications with other proper functionalization at the reactive hydroxyl groups of the cellulose.

Graphic abstract
  相似文献   

16.

Bacterial cellulose (BC) is a polymer with interesting conformation and properties. BC can be obtained in different shapes and is easily modified by chemical and physical means, so its applications in the production of new materials and nanocomposites for different purposes have been in the focus of many research projects. However, one of the major challenges to address in bacterium-derived polymer technology is to find suitable carbon sources as substrates that are cheap and do not compete with food production for achieving large scale industrial applications. Agricultural wastes are defined as the residues from the growing and processing of raw agricultural products such as crops, fruits, vegetables and dairy products. Their composition can vary depending on the type of agricultural activity and harvesting conditions, but these residues are suitable for the production of BC. The aim of this review is to give insight into the production of BC using agro-wastes and an overview of the most interesting and novel applications of this biopolymer in different areas i.e. environmental applications, optoelectronic and conductive devices, food ingredients and packaging, biomedicine, and 3D printing technology.

Graphic abstract
  相似文献   

17.
Han  Fuyi  Huang  Hong  Wang  Yan  Liu  Lifang 《Cellulose (London, England)》2021,28(17):10987-10997

Cellulose nanofibril (CNF) aerogels have attracted great interests in recent years due to the low cost, sustainability and biocompatibility of raw CNF. However, the poor thermal stability and flammable feature of CNF aerogels have limited their wider applications. In this paper, polydopamine/CNF composite aerogels with good comprehensive properties are fabricated by modification of CNF with polydopamine and metal coordination bonds crosslinking. The microstructure and properties of composite aerogels are thoroughly characterized by a variety of tests. It is found that the microstructure of aerogels are more regular and the compressive strength of aerogels are enhanced by the incorporation of polydopamine and Fe3+ crosslinking. Importantly, the thermal stability and flame resistance of aerogels are significantly improved, which permit the application of composite aerogels in high-temperature thermal insulation. In addition, the reversible characteristic of metal coordination bonds allows the water induced healing of fractured composite aerogels. This study is expected to provide information for future development of green and high-performance aerogels.

Graphic abstract
  相似文献   

18.

The present work aims to investigate the feasibility of oxalic acid-choline chloride deep eutectic solvent (OA-ChCl DES), which serves as a promising green solvent that utilized in the acidic deep eutectic solvent (DES) hydrolysis. Oxalic acid-choline chloride DES cellulose nanocrystal (OA-ChCl DES CNC) was isolated from the bleached DES treated pulp (BP) through the acidic DES hydrolysis using 1:1 molar ratio of OA-ChCl DES. The functional groups, crystallinity index, morphological structure, particle size, zeta potential, thermal stability and surface chemistry of the OA-ChCl DES CNC were compared with the sulphuric acid cellulose nanocrystal (SA-CNC) that prepared via sulphuric acid hydrolysis. The findings revealed the presence of negatively charged carboxyl groups on OA-ChCl DES CNC surface after the acidic DES hydrolysis. The physicochemical analyses verified that the OA-ChCl DES CNC was in nano-sized range with polydispersity index (PdI) of 0.56, indicating slightly monodispersed nanoparticles. A stable OA-ChCl DES CNC colloidal suspension with zeta potential value of ?52.1?±?5.2 mV was obtained. The OA-ChCl DES CNC outweighed the SA-CNC in term of thermal stability (288 °C) despite having a slightly lower crystallinity index (76.7%). In fact, the OA-ChCl DES CNC with a yield of 55.1% was achieved through the acidic DES hydrolysis, suggesting that the OA-ChCl DES was capable of promoting efficient cleavage of strong hydrogen bonds in BP.

Graphic abstract
  相似文献   

19.
Li  Fangchao  Miao  Gan  Gao  Zhongshuai  Xu  Ting  Zhu  Xiaotao  Miao  Xiao  Song  Yuanming  Ren  Guina  Li  Xiangming 《Cellulose (London, England)》2022,29(8):4427-4438

The development of a versatile platform that can separate oil/water mixture, remove dye from water, and purify wastewater is extremely desirable, yet still hard to realize. Herein, to address this challenge, a composite hydrogel was produced by freezing–thawing treatment using chitosan, polyvinyl alcohol, and carbon black as the raw materials. The obtained hydrogel displayed both slippery oil-repellency and water-affinity in air, underwater, when submerged in oil, and exploiting this special wettability, the hydrogel coated mesh can be used to separate oil/water mixtures efficiently. After 25 oil–water separation cycles, the hydrogel-coated filter still had a separation efficiency of over 98%. With its superhydrophilicity and active functional groups, the resulting hydrogel was able to absorb dye molecules dissolved in water effectively. Due to the photothermal effect of carbon black, the local temperature of the hydrogel was increasing quickly under sunlight illustration, which allowed it to be an advanced platform for daily wastewater purification through solar distillation.

Graphical abstract

A versatile hydrogel platform for oil–water separation, dye adsorption, and domestic wastewater purification was developed.

  相似文献   

20.
Wei  Yuyi  Dai  Zhenhua  Zhang  Yanfei  Zhang  Weiwei  Gu  Jin  Hu  Chuanshuang  Lin  Xiuyi 《Cellulose (London, England)》2022,29(10):5883-5893

Increasing electromagnetic pollution calls for electromagnetic interference (EMI) shielding materials, especially sustainable, lightweight, and environmentally stable, biomass-based materials. MXene-coated wood (M/wood) is prepared by simply spraying MXene sheets on the wood surface. Varying this spray coating manipulates the shielding performance and its application to different wood species. The M/wood exhibits high electrical conductivity (sheet resistance is only 0.65 Ω/sq) with an excellent EMI shielding effectiveness of 31.1 dB at 8.2?~?12.4 GHz and is also fire retardant. Furthermore, waterborne acrylic resin (WA) is coated on M/wood to enhance environmental stability. The WA coating improves EMI shielding performance stability after water-soaking and drying testing and prevents the peeling of MXene from wood. These satisfactory properties of WA-M/wood and the facile manufacturing approach promote the feasibility of wood-based EMI shielding materials.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号