首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Degradation mechanism of green biopolyester nanocomposites with various cellulose nanocrystal based nanohybrids
Authors:Lu  Gaojun  Zhu  Jingli  Yu  Houyong  Jin  Meijin  Abdalkarim  Somia Yassin Hussain  Wei  Yong
Institution:1.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou, 310018, China
;2.HUAFON GROUP CO., LTD, Kaifa Road 1688, Ruian Economic Development Zone, Wenzhou, 325000, China
;
Abstract:

Oceans and soils have been contaminated with traditional plastic due to its lack of degradability. Therefore, green biopolymer composites reinforced with cellulose nanocrystal-zinc oxide hybrids (ZnO hybrids) with good biodegradation ability provided a positive impact on reducing environmental challenges. In this work, the effect of various morphologies of ZnO hybrids on the biodegradation ability of poly(butylene adipate-co-terephthalate), PBAT) under seawater, soil burial, and UV aging conditions were investigated. Sheet-like ZnO hybrids (s-ZnO hybrid) efficiently enhanced the mechanical, UV-blocking properties and biodegradation ability of PBAT nanocomposite films. Compared to neat PBAT, the best tensile strength of PBAT nanocomposite with 2 wt% s-ZnO hybrid was increased by 15.1%, meanwhile this nanocomposite films showed the highest biodegradation rate after 80 days of soil degradation and 90 days of seawater degradation. Besides, three possible biodegradation mechanisms of green PBAT nanocomposite films were presented, hinting that such PBAT nanocomposite have great promising packaging applications.

Graphic abstract
 loading=
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号