首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
制备了氧化钕-单壁碳纳米管修饰玻碳电极(Nd2O3-SWNTs/GCE)。采用循环伏安法(CV)探究了鸟嘌呤(G)和腺嘌呤(A)在该修饰电极上的电化学行为。结果表明:该修饰电极对G和A的氧化具有良好的电催化能力。在最佳条件下,用示差脉冲伏安法(DPV)对G和A进行检测,其氧化峰电流与浓度分别在10~50μmol/L范围内呈现良好的线性关系,检出限(S/N=3)均为5.0×10-8 mol/L。该修饰电极可以用来同时测定DNA中的G和A。  相似文献   

2.
采用微电极循环伏安法和吸附转移溶出伏安法研究了单链多聚腺嘌呤核苷酸Poly(A)在金电极上的伏安行为。重点了考察了Poly(A)的吸附和氧化过程。发现Poly(A)分子在金电极表面能够形成多种状态的特性吸附。影响吸附态和吸附强度的主要因素是吸附电势, 吸附时间和溶液浓度。在负电位区, 随着吸附时间(t~s)的变化, Poly(A)分子在金电极表面发生不同状态的以腺嘌呤碱基为吸附位点的强吸附, 这种以腺嘌呤碱基吸附的Poly(A)分子能够在零伏附近给出很强的氧化电流峰和对应的还原峰。  相似文献   

3.
在NaH2 PO4-Na2 HPO4溶液中,用循环伏安法、差分脉冲伏安法(DSV)和方波伏安法(SWV)在玻碳电极(GCE)上对兰索拉唑进行了电化学研究,发现兰索拉唑在-1.3伏左右有一个明显的阴极还原峰,考察了不同底液及pH、扫描速度、富集时间和静止时间的影响,DSV法线性范围为6.0×10-6~ 1.0×10-3m...  相似文献   

4.
以La(OH)3纳米片为修饰剂,制备了基于La(OH)3纳米片修饰玻碳电极(LNP/GCE)。采用循环伏安(CV)法研究了鸟嘌呤(G)和腺嘌呤(A)在该修饰电极上的电化学行为。实验结果表明,在HAc-NaAc缓冲溶液中,该修饰电极对G和A都表现出了良好的电催化性能。在最佳条件下,用差分脉冲伏安(DPV)法对G和A进行了测定,其氧化峰电流与G和A的浓度在0.1~10μmol/L范围内呈良好的线性关系,检测限(S/N=3)分别为0.01μmol/L和0.03μmol/L。将该修饰电极用于DNA中A和G的同时测定,获得较好结果。  相似文献   

5.
结合纳米材料的电催化特性和中性红聚合物薄膜的分子识别能力, 以玻碳电极为基体制备了多壁碳管/聚中性红(MWNT/PNR)修饰电极, 并用表面扫描电镜和循环伏安法进行了表征. 实验表明, 该修饰电极对腺嘌呤(A)和鸟嘌呤(G)都表现出了良好的电催化性能. 在最佳条件下, 用示差脉冲伏安法对A和G进行了测定, 其氧化峰电流于A和G的浓度分别在0.01~4 μmol/L和0.01~8 μmol/L范围内呈良好的线性关系, 检测限均为5×10-9 mol/L (S/N=3). 该修饰电极可以用来同时测定DNA中的A和G.  相似文献   

6.
对位叠式循环方波伏安法:Ⅰ.简单可逆电极体系   总被引:3,自引:0,他引:3  
莫金垣  蔡沛祥 《分析化学》1995,23(3):250-254
本文提出叠式循环方波伏安法和对位叠式循环方波伏安法,对简单可逆电极体系的理论作了推导和验证,经对各种电流的比较,发位叠式循环方波伏安法有较多的优点。较之其它方波伏安法灵敏。  相似文献   

7.
本文用BAS-100A电化学分析仪研究了6-甲基腺嘌呤(6-MA)的极谱伏安行为。结果表明,在0.2mol/L H_2SO_4底液中,6-MA产生一良好的还原峰,峰电位为-1.10V(vs.Ag/AgCl),峰高与浓度在1×10~(-6)~9×10~(-3)mol/L范围内呈良好的线性关系。实验证明,该峰具有吸附性。本文还对电极反应机理进行了探讨。  相似文献   

8.
本文用循环伏安法、溶出伏安法和计时库仑法等多种电化学方法研究了合成的镍(Ⅱ)与meso-四(4-N-甲基吡啶基)卟啉(TMPyP)络合物的电还原行为。结果表明,Ni(Ⅱ)TMPyP的还原过程是中心离子Ni(Ⅱ)和卟啉环同时还原,其中Ni(Ⅱ)被还原为Ni(0),总电子转移数为6.比较并讨论了溶解氧对锰、铁、钴、镍卟啉的不同影响。  相似文献   

9.
采用循环伏安法(CV)、差分脉冲伏安法(DPV)和方波伏安法(SWV)在玻碳电极(GCE)上对痢菌净进行了电化学研究.实验表明:在pH=6.6的B-R缓冲底液中,痢菌净在-0.85伏左右有一个明显的可逆氧化还原峰,考察了不同底液及pH值、扫描速度、富集时间和静止时间的影响.DPV法其线性范围为2.0×10-6mol/L~2.0×10-3mol/L,检出限为5.0×10-8 mol/L;SWV法其线性范围为2.0×10-6 mol/L~1.0×10-3 mol/L,检出限为2.0×10-8 mol/L.并对痢菌净的电极反应机理进行了初步探讨,该方法操作简单、灵敏,可用于实际药品测定.  相似文献   

10.
合成了3种新型结构稳定的烟酰胺腺嘌呤二核苷酸(NAD~+)类似物并通过~1H NMR、~(13)C NMR、~(31)P NMR和HRMS进行了表征。NAD~+类似物经80℃加热24 h后,通过~1H NMR确认其结构稳定;通过循环伏安法(CV)测定了其电化学性质,表明其仍然具有良好的氧化还原性能。  相似文献   

11.
用单扫描极谱法和循环伏安法研究了双硫腙在酸性和碱性水溶液中的极谱行为.在碱性介质中,有三个还原波-0.63,-0.52和-0.45V,分别对应于双硫腙阴离子,它的氧化产物四氮化合物和二硫化合物的还原过程,在酸性介质中,只有一个-0.18V的双硫腙还原波.上述波的电极反应和特征也讨论了.  相似文献   

12.
The voltammetric behavior of uric acid (UA) was studied at a carbon-ceramic electrode modified with multi walled carbon nanotubes; which was developed via a simple procedure. UA can be effectively oxidized at the surface of the electrode and produced an anodic peak at about 0.29 V in pH 6.8 phosphate buffer solutions. The experimental parameters such as pH, accumulation time, and amount of multi walled carbon nanotubes were optimized for determination of UA. Under the optimum conditions, the anodic peak current in differential pulse voltammetry is linear to the UA concentration over the range from 2.5×10?7M to 1.0×10?4 M with a correlation coefficient of 0.998. The electrode exhibited good stability and could be easily regenerated. The relative standard deviation of the peak current obtained for a 5.0?×?10?5 M UA solution was 1.0%. The influence of dopamine and ascorbic acid on the anodic peak current of UA was examined. This method was successfully applied for the determination of uric acid in human urine sample, and the recovery was 99.9%.  相似文献   

13.
谢乃贤  黄义祥 《化学学报》1989,47(3):227-232
用电化学方法研究了硫在DMSO溶剂中的第二步氧化还原过程. 该过程在扫速大于200mV/s时表现为简单的电子转移过程; 扫速小于200mV/s时转化为ECE机理. 发现了S8^4^-, S3^2^-, S4^2^-的氧化峰, 峰电位分别为 -1.50, -0.96, -0.60(相对于银参比电极), 对S8^2^-/S8^4^-电对测定了标准电极电位和标准速率常数, 分别是-1.547±0.002V(相对于银参比电极)和3.3×10^-^3cm/s.  相似文献   

14.
Differential pulse and cyclic voltammetry were applied for the oxidation of mixture of uric acid and ascorbic acid at the surface of carbon paste/cobalt Schiff base composite electrode. The electrooxidation of these compounds at bare electrode is sluggish, and there is no suitable peak separation between them. However, using cobalt methyl salophen as modifier, two well-defined anodic waves with a considerable enhancement in the peak current and a remarkable peak potential separation near 315 mV are obtained. It can improve the kinetics of electron transfer for both compounds remarkably. All these improvements are created because of the electrocatalytic property of cobalt Schiff base complex. The effect of some parameters such as pH and scan rates were studied. All the anodic peak currents for the oxidation of ascorbic acid and uric acid shifted toward more negative potential with an increase in pH, revealing that protons have taken part in their electrode reaction processes. The best peak separation with appropriate current was obtained for pH 4.0. A linear range of 5.0?×?10?4 to 1.0?×?10?8 and 1.0?×?10?3 to 1.0?×?10?8 M with detection limit of 8.0?×?10?9 and 8.0?×?10?9 M was obtained for ascorbic acid and uric acid using differential pulse voltammetry at the surface of modified electrode, respectively. Analytical utility of the modified electrode has been examined successfully using human urine samples and vitamin C commercial tablets.  相似文献   

15.
Multiwalled carbon nanotubes with nanosized sputtered gold were used to modify a glassy carbon electrode (GCE). The substrate was characterized by scanning electron microscopy (SEM), X-ray diffraction, cyclic voltammetry and amperometry. SEM micrographs indicated an uniform coverage of the carbon nanotubes with nanosized (poly)crystalline gold. Cyclic voltammetry reveals that peak separation of the unmodified GCE in the presence of 1?mM ferricyanide is 131?mV, but 60?mV only for the modified GCE. In addition, the oxidation of NADH (1?mmol?L?1 solution) begins at negative potentials (around ?100?mV vs. Ag/AgCl), and the anodic peak potential (corresponding to the irreversible oxidation of NADH) is found at +94?mV. The effect of pH on the electrocatalytic activity was studied in the range from 5.4 to 8.0. The relationship between the anodic peak potential and the pH indicated a variation of ?33.5?mV/pH which is in agreement with a two-electron and one-proton reaction mechanism. Amperometry, performed at either ?50 or +50?mV vs. an Ag/AgCl reference electrode, indicates that the modified electrode is a viable amperometric sensor for NADH. At a working potential of +50?mV, the response to NADH is linear in the concentration range from 1 to 100???mol?L?1, with an RSD of 6% (n?=?4).
Figure
Multiwalled carbon nanotubes with nanosized sputtered gold were used to modify a glassy carbon electrode. The oxidation of NADH (1?mmol?L?1) begins at negative potentials (around ?100?mV vs. Ag/AgCl), and the anodic peak potential (corresponding to the irreversible oxidation of NADH) is found at +94?mV.  相似文献   

16.
A nanogold modified carbon paste electrode (NG‐CPE) was fabricated and used as selective voltammetric sensor for determination of Tartrazine in the presence of Red 10B using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CHA). Electrochemical parameters including the diffusion coefficient (D), the electron transfer coefficient (aXXXXX), and the electron transfer number (n) were determined for the oxidation of Tartrazine. This modified electrode can be applied to simultaneous determination of Tartrazine and Red 10B, because of considerable decreases of anodic overpotentials for both compounds. After optimizing the experimental conditions, the anodic peak current of Tartrazine was linear to its concentration in the range of 0.05‐1.5 μmol l?1, and the detection limit was 0.017 μmol l?1 in phosphate buffer solution (PBS) at pH 4.0. The modified electrode has good stability and repeatability. It was applied to the determination of Tartrazine and Red 10B in soft drinks with satisfactory results.  相似文献   

17.
Radi A  El-Sherif Z 《Talanta》2002,58(2):319-324
The adsorption behavior of levofloxacin on a glassy carbon electrode was explored by cyclic and square-wave voltammetry. The drug was accumulated on a glassy carbon electrode and a well-defined oxidation peak was obtained in acetate buffer pH 5.0. Using square-wave anodic stripping voltammetry and accumulation at +0.4 V versus Ag/AgCl (saturated KCl) for 300 s, linear calibration graph was obtained from 6.0x10(-9) to 5.0x10(-7) M levofloxacin. The detection limit was calculated to be 5.0x10(-9) M. The R.S.D. determined from ten determinations at the 1.0x10(-7) M level was 1.7%. The method was applied for the direct determination of levofloxacin in diluted urine samples. It was validated using high-performance liquid chromatography (HPLC) as a reference method.  相似文献   

18.
本文采用一种简单电化学方法,即恒电流法处理自制碳纤维电极,在脑神经递质测定中显示了很高的灵敏度和分辨能力.活化后的电极对多巴胺的检测限达5×10^-8mol.dm^-3,对多巴胺和抗坏血酸的伏安峰分离达170mV.作者使用该电极,采用半微分伏安法测定了活体大鼠脑内抗坏血酸,3,4-二羟苯乙酸和5-羟吲哚乙酸的浓度分别为1.7×10^-4,2.1×10^-5和 3.3×10^-6mol·dm^-3.本文对电极的制作,活化条件,伏安峰判别,在体药物实验和电极活化机理等进行了研究和探讨.  相似文献   

19.
Disposable screen-printed electrodes (SPCE) were modified using a cosmetic product to partially block the electrode surface in order to obtain a microelectrode array. The microarrays formed were electropolymerized with aniline. Scanning electron microscopy was used to evaluate the modified and polymerized electrode surface. Electrochemical characteristics of the constructed sensor for cadmium analysis were evaluated by cyclic and square-wave voltammetry. Optimized stripping procedure in which the preconcentration of cadmium was achieved by depositing at ?1.20 V (vs. Ag/AgCl) resulted in a well defined anodic peak at approximately ?0.7 V at pH 4.6. The achieved limit of detection was 4 × 10?9 mol dm?3. Spray modified and polymerized microarray electrodes were successfully applied to quantify cadmium in fish sample digests.  相似文献   

20.
采用线性循环溶出伏安法和差分脉冲溶出伏安法对磺胺嘧啶在电活化玻碳电极上的电化学行为进行了研究。玻碳电极在PBS溶液中(pH 7.0),用恒电位法在1.7 V阳极氧化400 s,在B-R缓冲溶液中,磺胺嘧啶在1.02V(vs.Ag/AgCl)处有一良好的氧化峰,在0.02~0.25 V/s范围内,其氧化峰电流与扫描速率呈良好线性关系,表明电极过程为受吸附控制的不可逆过程。差分脉冲溶出伏安法的氧化峰电流(Ipa)与磺胺嘧啶浓度1×10-6~1×10-4mol/L范围内呈良好的线性关系(r=0.9977),检出限为8.7×10-7mol/L(S/N=3)。方法已用于分析磺胺嘧啶片剂的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号