首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 467 毫秒
1.
电气石属三方晶系的硼铝硅酸盐,主要有铁电气石、锂电气石、镁电气石、钠-锰电气石等品种,因含不同的过渡元素或色心而呈绿、蓝、黄、红、粉、棕和黑色。选取棕褐色电气石样品在还原和中性气氛加热3 h,结果显示,600 ℃晶体出现大量裂隙;500和450 ℃棕褐色调减弱,透明度大大提升,500 ℃裂隙稍多;350 ℃加热,样品变绿黄棕色;250 ℃加热样品略微变浅,仍为棕褐色调;加热后∥c轴切面见明显绿色与棕色二色性,垂直c轴切面,即{0001}面,为棕色;综合显示,最佳变色温度在450~500 ℃。利用X射线荧光光谱(XRF)、红外吸收光谱(IR)和紫外-可见光吸收光谱(UV-Vis)对热处理前后样品进行分析,样品属于富Mn和Fe的锂电气石。样品中红外特征吸收峰在3 800~3 400,1 350~1 250,1 200~800与800 cm-1,近红外光谱有4 720,4 597,4 537,4 441,4 343,4 203和4 170 cm-1特征峰。热处理后,由M-OH(M为Al,Mg,Fe和Mn等)伸缩和弯曲振动所致的3 800~3 400 cm-1吸收峰减弱,600 ℃消失,与加热失水行为导致的结构水弯曲/伸缩振动减弱有关;近红外光谱4 170和4 720 cm-1吸收消失。棕褐色电气石在∥c轴切面的可见光范围内具有715,540和417 nm吸收带,依次为Fe2+ d-d(5T2g→5Eg)跃迁、Fe2+→Fe3+(IVCT)、Fe2+→Ti4+(IVCT)所致。样品具有高的Mn含量,417 nm附近的吸收可能存在Mn2+ d-d (6A1g→4A1g, 4TEg)自旋禁阻跃迁产生的413/414 nm叠加。热处理使Mn3+还原成Mn2+,Mn2+增加导致414 nm吸收峰增强,因此417 nm附近吸收带变化不大。同时,热处理后与Mn3+有关的520 nm吸收也同时消失,520 nm吸收带的存在也可能是540 nm吸收带呈非对称吸收峰的原因。450 ℃以上热处理后,715和417 nm吸收带变化不大,位于绿光区的540 nm吸收带消失,分析认为加热使得部分Fe3+还原为Fe2+,导致Fe2+→Fe3+(IVCT)减少,在∥c轴切面上540 nm吸收显著减弱。540 nm吸收带在绿色光区域,其消失导致绿色光透过,样品呈绿色。  相似文献   

2.
溪蛋石是寿山石的著名品种之一,指散落在月洋溪中的一种山坑石,系寿山石中的芙蓉石品种的风化产物。残块经过雨水冲刷流入溪中,复受水流、河沙等长年冲击,形成浑圆卵石状外表,因其易于雕刻塑形,广受近代雕刻家好评。为了探究寿山溪蛋石的矿物学和谱学特征,运用常规的宝石学测试方法、X射线粉末衍射仪、傅里叶变换红外光谱仪、显微激光拉曼光谱仪和电子探针等测试方法,对几件黄色溪蛋石样品的矿物组成、红外及拉曼光谱特征、化学成分等展开了全面研究。常规宝石学测试结果表明,溪蛋石样品的相对密度约为2.8,摩式硬度小于3;为了避免层状硅酸盐矿物的择优取向性,XRD实验采用侧压法,测试结果表明,溪蛋石由较纯的叶蜡石组成,并以单斜晶系(2M型)叶蜡石的形式存在,以2θ=19°~22°之间4.44Å(020),4.24Å(12)和4.17Å(111)三个衍射峰为特征,其中(12)和(111)两个衍射峰相距很近,在(12)衍射峰(2θ=21.06°)右侧出现了一个衍射肩;在2θ=28°~31°之间,以3.06Å(003)强峰(2θ=29.05°)为特征;采用红外光谱仪可以有效的确定溪蛋石基质和石皮部分的矿物成分。样品的红外光谱表明,溪蛋石的风化皮与基质部分矿物成分均为叶蜡石,指纹区的主要特征峰为1 122,1 068,1 052,949,853,835,812,541和484 cm-1,其中,1 122 cm-1归属于Si-O伸缩振动,1 068和1 052 cm-1附近强而尖锐的吸收峰由简并解除的Si-O-Si伸缩振动引起,949 cm-1左右的吸收窄带由Al-OH面内弯曲振动引起;853,835及812 cm-1处强度较弱的倒“山”字形吸收谱带属于Al-OH面外弯曲振动,541 cm-1处吸收峰为Si-O-Al伸缩振动引起,484 cm-1归属于Si-O弯曲振动;官能团区3 675 cm-1处尖锐的吸收峰由Al-OH伸缩振动所导致,指示了叶蜡石结构的高度有序化。采用显微激光拉曼光谱对溪蛋石中的包裹体进行测试,以确认其矿物成分。结果显示,点片状黑色包裹体为赤铁矿,拉曼特征峰为224,291,409,494以及1 315 cm-1,灰白色矿物为硬水铝石,拉曼特征峰出现在448,499和667 cm-1,还存在707,788和1 194 cm-1处弱峰,与硬水铝石的标准谱峰吻合。此外,基质部分在111,194和261 cm-1处的拉曼峰由Si-O键伸缩振动所致,706 cm-1处强而尖锐的拉曼峰以及3 670 cm-1处的峰是由O-H伸缩振动所致,与叶蜡石的拉曼光谱一致,也与红外光谱的测试结果对应。根据矿物单位分子中的电价平衡原则和正电荷总数,利用电子探针测试数据计算溪蛋石的平均晶体结构化学式为:(Al1.98Na0.02Cr0.01)[(Si3.98Al0.02)O10](OH)2。溪蛋石化学成分稳定,主要含有Si(64.88%),Al(27.55%)。寿山溪蛋石中含0.2%左右的Cr和0.02%左右的Fe和Cr元素含量远大于Fe元素,因此推测溪蛋石的浅黄色由Cr和Fe离子共同作用所致。  相似文献   

3.
硬水铝石(α-AlOOH)是铝土矿的主要组成矿物之一,常用于工业提炼铝以及制作耐火材料。近年来,一种具有变色效应的硬水铝石晶体开始在市场中出现。采用X射线荧光能谱仪、红外光谱仪、拉曼光谱仪、紫外可见近红外分光光度计以及测量颜色参数等方法获得了变色硬水铝石和无变色效应硬水铝石的光谱学特征,并探讨了其变色效应的成因。变色硬水铝石在日光下常呈黄绿色而在白炽灯下呈褐红色,其红外光谱与拉曼光谱与普通硬水铝石的特征峰较为一致,其中红外光谱中的特征峰主要集中在400~1 200,1 800~2 110和2 900~3 000 cm-1三个范围内,拉曼特征峰则主要位于154,331,448,665和1 189 cm-1附近。对比化学成分分析和紫外可见吸收光谱的测试结果,认为Fe3+和Cr3+的d-d电子跃迁导致变色硬水铝石在可见光绿-黄绿色光区(500~560 nm)和橙黄-红色光区(600~780 nm)的透射程度较为接近,环境光源中红光和绿光相对功率分布的差异使硬水铝石产生变色效应。对变色硬水铝石在模拟日光和白炽灯光条件下的颜色参数进行了测定,结果显示不同光源下样品颜色参数a*和h0的变化,可定量地描述变色硬水铝石的变色效应。为硬水铝石的应用拓展、性能改善以及氢氧化物材料光学性质的深入探讨提供了科学依据和数据支持。  相似文献   

4.
对来自坦桑尼亚Merelani地区的坦桑石样品,分别采用电子探针、EMXPLUS型ESR谱仪、同步热分析仪、紫外可见光谱仪以及傅里叶变换红外光谱仪进行了测试与分析。结果表明:坦桑石样品的主要成分为SiO2,Al2O3和CaO,微量成分中V2O5含量相对最多,平均含量为0.36%;坦桑石样品本身不含吸附水,结晶水, 加热至780 ℃附近时,脱失结构水,样品中结构水大约占总质量的2%;ESR实验结果中显示出明显Fe3+和Mn2+的电子顺磁信号;紫外-可见光谱显示,样品在385 nm处出现吸收窄带,575和750 nm处分别出现较为宽缓的吸收;红外光谱测试表明,样品在6 500~9 000 cm-1波段的倍频振动区,基本没有吸收。在4 000~6 500 cm-1波段主要为和频振动,5 956 cm-1附近呈较宽缓的吸收峰,5 413,5 184,4 336和4 046 cm-1处出现较尖锐的吸收峰,主要可能由O-H,矿物内的Si-O,以及空气里面的H2O分子和CO2振动所引起。综合EPMA以及ESR分析结果,蓝-紫色坦桑石颜色可能主要由V3+和V5+共同引起,Fe3+晶体场的d-d电子跃迁、Fe2+→Ti4+的电荷转移辅助致色。  相似文献   

5.
尖晶石作为一种珍贵的宝石材料,因其瑰丽的颜色外观和悠久的历史而广受称赞。变色效应作为宝石学中一种常见的光学现象,在变石,蓝宝石,尖晶石,石榴石等宝石中都可以出现。通常将宝石的变色效应归结为Cr离子和V离子所致,但是目前有关变色尖晶石的报道较少,缺乏致色元素和变色机理的研究。本次研究对象是一颗具有变色效应的尖晶石(在D65光源下呈蓝色,在A光源下呈蓝紫色),和两颗不具有变色效应的蓝色尖晶石(两种光源下色调无明显变化)。运用电感耦合等离子体质谱仪(LA-ICP-MS)、紫外可见光谱仪、拉曼光谱仪、光致发光光谱仪获取样品的成分和光谱信息。LA-ICP-MS化学成分测试结果表明,三颗尖晶石均为镁铝尖晶石,主要化学成分为MgO和Al2O3,并含有Fe,V,Cr,Co和Zn等微量元素,在变色尖晶石中含有较多的Fe离子和微量的Co离子,不含有Cr离子,并且变色尖晶石与无变色效应的蓝色尖晶石中V离子含量相近。变色尖晶石紫外可见吸收光谱具有位于387, 461, 478, 527, 559, 590, 627和668 nm处的吸收峰,其中387, 461, 478和668 nm吸收峰与Fe离子有关。559,590和627 nm处的吸收峰是由Co离子d轨道电子自旋允许跃迁4A2→4T1(4P)并经自旋-轨道耦合作用分裂所致。此外,四面体配位中的Fe2+ d—d自旋禁阻跃迁5E(D)→3T1(H)同样在559 nm处产生吸收峰。由Co离子和Fe离子共同作用,在559 nm附近产生的吸收宽带是尖晶石产生变色效应的主要原因。拉曼光谱测试结果显示变色尖晶石与其他两颗蓝色尖晶石无差异,可见311,405,663和765 cm-1四个特征拉曼位移峰,依次对应F2g(1), Eg, F2g(3)和A1g振动。光致发光光谱(PL)测试发现变色尖晶石中处于Td对称位置的Co2+的4T1(P)能级会分裂成为三个子能级,电子由三个4T1(P)激发态的子能级回落到4A2(F)基态而产生位于686,650和645 nm处的发光峰。变色尖晶石中Co离子含量很低,并且Fe离子含量较高,受到Fe离子荧光猝灭作用,样品无红色发光现象。  相似文献   

6.
黑龙江穆棱地区宝石级石榴石的宝石学及谱学特征   总被引:1,自引:0,他引:1  
对黑龙江穆棱新生代玄武岩产出的宝石级石榴石进行了宝石学常规测试、电子探针测试、拉曼光谱、红外光谱和紫外-可见光谱测试,以获得该区石榴石的宝石学特征和谱学特征。化学成分分析表明,该区石榴石为镁铝榴石,含有Fe,Ca,Mn,Cr,Ti等杂质元素。其平均晶体结构化学式为 (Mn0.022Ca0.455, Fe2+0.720, Mg1.793)=2.990(Ti0.003Cr0.009Fe3+0.062Al1.951)=2.025(SiO4)3。拉曼光谱分析表明该区石榴石存在混合相,由石榴石桥氧振动引起的拉曼位移峰反映出该特征。镁铝榴石桥氧弯曲振动拉曼位移峰位于560 cm-1(A1g模)和641 cm-1(Eg+F2g模),钙铝榴石和铁铝榴石桥氧弯曲振动Eg+F2g模形成的拉曼位移峰分别位于507和486 cm-1。官能团区红外光谱显示该区镁铝榴石中不存在分子水,但少数镁铝榴石中存在少量的结构水,它们在3 585,3 566和3 544 cm-1处形成阶梯状的弱小吸收峰。该区镁铝榴石多为褐红色,其颜色由杂质离子Cr3+,Fe3+,Mn2+产生。紫外-可见吸收光谱显示,Fe3+的电子跃迁致570,521和502 nm吸收峰,Mn2+的电子跃迁致460和430 nm吸收峰,Cr3+电子跃迁致690和367 nm吸收峰。  相似文献   

7.
翠榴石为石榴石家族中最为贵重的亚种,以其漂亮的外观和稀有性深受欢迎。尤其是俄罗斯所产翠榴石更是国内外收藏家最为追捧的对象。前人从不同角度对石榴石族矿物研究较多,但关于翠榴石的研究较少。为了探究俄罗斯翠榴石的化学成分及光谱学特征,运用LA-ICP-MS,IR,Raman和UV-Vis,对俄罗斯翠榴石进行系统研究,旨在获得其化学成分尤其是稀土元素特征、光谱学特征,分析致色原因,为其品种鉴定及产地溯源提供重要数据。化学成分研究表明,俄罗斯翠榴石几乎为纯的钙铁榴石(Andradite>96.39 Mol.%)。次要成分中,Cr2O3含量较高,平均0.502 Wt%,除此以外还含少量Al,Mn,Ti和V。其中Cr和V均为石榴石中致绿色的元素。稀土元素含量总体不高,∑REE平均4.85 μg·g-1;且轻稀土元素明显富集,∑LREE平均4.56 μg·g-1;重稀土元素相对亏损,∑HREE平均0.29 μg·g-1, ∑LREE/∑HREE=5.35~100.48。多数样品显示Eu正异常。主要拉曼位移为994.5,873.5,841.5,815,576,552,515,492,451,369,351,323,310.5,295,263,234.5和172 cm-1。拉曼光谱仅可作为翠榴石品种鉴定的手段之一,对其产地溯源作用不大。红外光谱研究表明,指纹区红外反射光谱可以有效鉴别翠榴石,红外光谱官能团区显示结构水的吸收峰,表明俄罗斯翠榴石含有少量结构水,这与其形成过程与热液交代作用有关。紫外-可见吸收光谱研究显示,俄罗斯翠榴石在384和440 nm处具明显吸收峰,436 nm见弱吸收峰,620 nm附近出现宽缓吸收带,从500 nm附近至紫外区强烈吸收。分析认为440 nm吸收带归于八面体位Fe3+的6A14A1g+4Eg(G)跃迁所致;620 nm吸收带归于八面体位Cr3+的4A2g(F)→4T2g(F) d-d跃迁所致,Fe和Cr同为致色元素,O-Fe荷移带及440 nm强吸收带使得钙铁榴石产生黄色、黄绿色,Cr3+的加入,产生620 nm宽缓吸收带,吸收橙黄色光,使得宝石颜色向绿色端偏移,显示纯正的绿色。拉曼光谱、红外光谱指纹区特征可以用于准确鉴定翠榴石;稀土元素特征及中红外光谱官能团区结构水特征,可以为其产地溯源提供重要信息。  相似文献   

8.
针对新出现在市场上的一种水热法合成蓝绿色绿柱石,运用LA-ICP-MS、红外光谱、拉曼光谱、紫外-可见光谱进行系统研究,旨在获得其宝石学及谱学特征,探讨颜色成因,为检测机构鉴定该合成宝石提供参考数据。结果表明,样品折射率为1.570~1.576,与天然绿柱石相近,内部含特征的水波纹状生长纹理,可作为主要鉴定特征之一。LA-ICP-MS分析表明,该合成绿柱石化学成分相对单一,主要致色元素为Cr和Ti,还含有微量的V,碱金属含量极低。紫外-可见光谱主要显示Cr的吸收峰,结合LA-ICP-MS测试,认为其蓝绿色调主要由Cr和Ti共同导致。其中绿色调主要由Cr致色,微量的V可能也对绿色调有所影响。钛则致紫色,与绿色叠加形成样品具有的蓝绿色调,具体的致色机理有待进一步研究。在2 000~4 000 cm-1的红外光谱中,以3 700 cm-1为中心的宽吸收带吸收强烈,归属于两种类型通道水的基频振动及其耦合;2 449,2 615,2 746,2 813,2 885和2 983 cm -1处吸收峰,均为Cl-引起;3 108和3 299 cm-1的较强吸收峰由NH4+所致。在4 000~8 000 cm-1的近红外吸收光谱中,为合成绿柱石通道水的合频和倍频振动区。其中,Ⅰ型水的合频振动所致的5 275 cm-1处强吸收峰、伴随5 106和5 455 cm-1处较强吸收峰,及Ⅰ型水倍频振动所致的7 143 cm-1强吸收峰,可作为样品是水热法合成绿柱石的重要鉴定特征,且对于鉴定较厚的刻面宝石尤为重要。天然绿柱石中相应的这两处吸收峰强度较弱甚至不存在。样品的拉曼光谱和标准绿柱石的拉曼光谱一致。685 cm-1峰的半高宽为7.1~7.3 cm-1,小于8.5 cm-1,可作为水热法合成绿柱石的又一鉴定特征。  相似文献   

9.
利用常规宝石学仪器、电子探针、傅里叶变换红外光谱仪、激光拉曼光谱仪、紫外-可见分光光度计和三维荧光光谱仪等,对马达加斯加黄色方柱石的宝石学性质及谱学特征进行了研究分析。马达加斯加方柱石的宝石学特征与方柱石理论值基本一致;方柱石样品颜色均匀,具有玻璃光泽,原石晶型较为完好且表面普遍可见纵纹及褐红色杂质,部分样品表面可见晕彩效应,样品内部可见多种包裹体,如黑云母、无色晶体包裹体等。红外光谱分析结果表明,样品在指纹区均显示1 039,1 105和1 196 cm-1处 Si(Al)—O伸缩振动吸收峰;752 cm-1处Si—Si(Al)伸缩振动吸收峰;551,687和624 cm-1处O—Si (Al)—O 弯曲振动吸收峰;459 cm-1处Si—O—Si的弯曲振动与Na(Ca)—O伸缩振动的耦合吸收峰;416 cm-1处Si—O—Si弯曲振动吸收峰。红外光谱官能团区的诊断性鉴定依据为:3 530和3 592 cm-1处O—H振动引起的吸收峰;2 499,2 629和2 964 cm-1处CO2-3振动产生的吸收峰。拉曼光谱分析结果表明,桥氧弯曲振动产生459和538 cm-1两处吸收峰;Al—O振动导致775 cm-1吸收峰;硅氧四面体Q4结构单元振动产生1 114 cm-1吸收峰。紫外-可见光吸收光谱可知,马达加斯加方柱石为过渡金属元素致色,铁离子的存在导致了379和420 nm两处吸收峰,且420 nm吸收峰的强弱影响着方柱石的颜色深浅。致色原因为占据了晶体结构中四面体位置的Fe2+与Fe3+之间电荷转移,从而产生黄色。三维荧光光谱分析显示,方柱石具有较为一致的发光行为,均可见一强一弱两个荧光峰,多集中在302 nm(λex)/343 nm(λem)附近。电子探针成分分析结果表明样品属于方柱石族系列中的针柱石,Ma值范围为66%~69%, 平均Ma值为68.1%,且随着Ma值的增高,双折射率随着变小。谱学测试作为无损测试技术,适用于鉴定宝石品种。对鉴定马达加斯加方柱石具有重要的意义,同时为产地溯源、区分优化处理品种提供数据支持。  相似文献   

10.
新疆和田黑色透闪石质软玉振动光谱特征及颜色成因   总被引:1,自引:0,他引:1  
采用X射线荧光光谱仪、X射线粉晶衍射仪、红外光谱仪、拉曼光谱仪等对黑色透闪石质软玉样品进行化学成分和谱学特征研究。通过X射线粉晶衍射判定所采样品全部属于透闪石质软玉,采用红外光谱仪和拉曼光谱仪对样品进行振动光谱测试,并结合化学成分测试结果分析墨玉的组成和颜色成因。结果显示,黑色透闪石质软玉可分为两种:由含铁量较高的阳起石组成的(TFe2O3:7.47Wt%~11.97 Wt%),另外一种是由透闪石和石墨组成,并且含铁量比较低(TFe2O3:0.56 Wt%~4.74 Wt%)。两者的振动光谱特征与透闪类矿物基本一致,在含石墨透闪石的拉曼光谱中出现了石墨特征峰1 581cm-1。因此,拉曼光谱在区分阳起石致色和石墨致色的黑色透闪石质软玉比红外光谱更加敏锐,该方法可以成为无损鉴定黑色透闪石质软玉颜色成因和产地来源的重要辅助手段。  相似文献   

11.
新疆哈密绿松石的矿物学和光谱学特征研究   总被引:1,自引:0,他引:1  
最近在新疆哈密发现了可规模开采的宝石级绿松石矿床。采用X射线粉晶衍射仪、激光剥蚀电感耦合等离子体质谱仪、扫描电子显微镜、傅里叶变换红外光谱仪、拉曼光谱仪、紫外-可见光谱仪等测试方法,对该地绿松石的化学成分、矿物组成、表面微形貌、红外吸收光谱、拉曼散射光谱、紫外-可见吸收光谱等矿物学和光谱学特征进行了系统对比研究。新疆哈密绿松石的主要化学成分以富Cr (1 617 ppm),V (435 ppm),Ti (428 ppm),贫Ba (99.9 ppm)为特征,随着Fe2O3/CuO比值的递减,绿松石的色调由绿变蓝。由磷酸根、羟基和结晶水引起的特征峰出现在该地绿松石的拉曼光谱和红外吸收光谱,其中磷酸根的振动峰位于1 000~1 200和420~650 cm-1,羟基的振动峰出现在3 400~3 600 cm-1,而结晶水引起的振动峰位于3 000~3 300 cm-1。此外,该地绿松石的紫外-可见吸收光谱显示,在600~700和430 nm处分别有由Cu2+和Fe3+引起的吸收峰,这两处的峰强与绿松石的蓝绿色调之间的关系,和新疆哈密绿松石成分中Fe2O3/CuO的比值与颜色之间的关系对应一致。  相似文献   

12.
“海纹石”的矿物学及谱学特征研究   总被引:1,自引:0,他引:1  
“海纹石”是具有蓝色条带的针钠钙石,是一种稀有的宝石材料,具有较好的市场前景。为查明其矿物学特征及成因,采用常规宝石学测试并结合X射线衍射(XRD)、傅里叶红外吸收光谱(FTIR)、拉曼光谱(Raman)、扫描电镜(SEM)及紫外-可见分光光度计(UV-Vis)等现代测试方法,对“海纹石”不同颜色部分的矿物成分及特征进行了深入分析。XRD,FTIR,Raman分析结果表明,“海纹石”的主要组成矿物为针钠钙石,并含有少量的方解石,与SEM分析结果较为一致。FTIR分析显示,“海纹石”白色部分在1 500 cm-1处出现一个明显的宽吸收带并伴有883和710 cm-1的吸收峰,表明含有少量方解石,而蓝色部分在该处没有此吸收。紫外可见吸收光谱分析显示蓝色部分在可见光区有640 nm宽吸收峰,表明可能含有微量元素Cu。“海纹石”白色和蓝色部分矿物组分的差异,表明两者可能形成于不同的地质环境。  相似文献   

13.
选取产自广西大化瑶族自治县岩滩镇的黑青色阳起石玉为研究对象,采用电子探针、傅里叶变换红外光谱仪和激光拉曼光谱仪就其化学成分和振动光谱特征进行测试分析,并对小半径金属阳离子在阳起石晶体结构中的占位情况予以讨论。结果表明,广西黑青色阳起石玉的主要矿物组成为富铁阳起石,并含有少量铁阳起石;化学成分中的高含量FeOT(Wt%:18.596%~26.791%)是导致其折射率值(1.64)、密度值(3.12 g·cm-3)偏高且在自然光下呈黑色、透射光下呈绿色的主要原因。受晶体结构中Fe2+对Mg2+的类质同象替代作用影响,广西黑青色阳起石玉1 400~400 cm-1范围内的红外吸收谱带与100~1 200 cm-1范围内的拉曼谱峰位置较透闪石向低频区发生偏移,频差不等;且中红外、近红外吸收光谱和拉曼光谱中均可见四个(MgMgMg)OH(A带),(MgMgFe2+)OH(B带),(MgFe2+Fe2+)OH(C带)和(Fe2+Fe2+Fe2+)OH(D带)振动谱带,其中基频振动谱带分别位于3 674,3 660,3 644和3 625 cm-1附近,倍频振动谱带分别位于7 183,7 154,7 118和7 077 cm-1附近,相对强度为A<D<B<C。化学成分和M-OH红外振动谱带积分面积计算结果显示广西黑青色阳起石玉晶体结构中Mg2+优先占据M2位置,Fe2+优先占据M1位置;Mg2+和Fe2+在M1和M3位置上的分布相对有序,占位系数接近于1。综合分析认为广西黑青色阳起石玉的变质程度属绿片岩相范畴。  相似文献   

14.
氟磷锰矿是一种稀有矿物,宝石级氟磷锰矿可呈现高饱和度的红橙色.选取三颗来自巴基斯坦的样品,通过电子探针、拉曼光谱、红外光谱和紫外-可见光吸收光谱进行系统研究,旨在获得其化学成分、光谱学特征,分析致色离子,为其品种鉴定、优化处理等提供重要数据.样品平均化学成分化学式为(M n1.66,Fe0.17,Ca0.15,Mg0....  相似文献   

15.
随着近几年文玩市场的兴起,"绿龙晶"成为人们喜爱的一类新兴的宝玉石品种。目前对于"绿龙晶"的主要矿物组成的认识仍存分歧。采用常规宝石学仪器测试、电子探针、红外吸收光谱和X射线粉晶衍射测试方法对产自俄罗斯的"绿龙晶"玉的基本性质、化学成分、红外吸收光谱及矿物组成特征等进行了较为详细的研究分析。结果显示:俄罗斯"绿龙晶"玉主要为深绿至灰绿色,表面具有特殊的放射状花纹及典型的丝绢光泽,折射率约为1.57,密度为2.61g·cm-3。"绿龙晶"中SiO2的含量为36.177%~36.651%,MgO含量为36.439%~36.730%,Al2O3含量为11.961%~12.318%,FeO含量为2.304%~2.853%,具富镁贫铁特点。样品中Al/(Al+Mg+Fe)为0.185 3~0.215 9,推测其为镁铁质岩蚀变成因。样品中的Si=3.10~3.40,Fe~(2+)/R~(2+)=0~0.024 8,属叶绿泥石类型。"绿龙晶"的红外吸收光谱为特征的绿泥石振动谱峰,高频区3 673cm~(-1)附近的吸收峰为OH伸缩振动所致,1 400cm~(-1)附近吸收峰属OH弯曲频率,1 000cm~(-1)附近的三个吸收峰由Si—O伸缩振动致,400~600cm~(-1)之间的吸收谱带属于Si—O弯曲振动。其中中频区1 000cm~(-1)附近分裂的三个吸收峰1 051,1 006和968cm~(-1)可作为鉴定其为叶绿泥石的关键证据。X射线粉晶衍射分析结果与化学成分及红外吸收光谱分析结果一致,显示"绿龙晶"中的主要组成矿物为叶绿泥石,非斜绿泥石。  相似文献   

16.
运用傅里叶变换红外光谱仪对常见宝石、玉石、有机宝石的近红外光谱进行分析研究以及谱峰归属。宝石的近红外光谱表明,宝石矿物中广泛存在不同类型水的合频、倍频吸收峰,也可出现能量较低的电子跃迁吸收峰,其中水分子组合频吸收峰位于5 200 cm-1±,OH的倍频吸收峰位于7 000 cm-1±,以5 898 cm-1±和7 849 cm-1±为中心的强宽吸收谱带为能量较低的电子跃迁吸收峰,并且当只有7 000 cm-1±出现时表明水以—OH的形式存在于宝石中,当5 200和7 000 cm-1±吸收峰同时存在则表明宝石矿物中水的存在形式既有水分子也有—OH。而有机宝石近红外光谱以7 000 cm-1± NH伸缩振动的一级倍频和5 200 cm-1± NH伸缩振动与酰胺Ⅱ的组合频为特征。但是,近红外光谱吸收峰的峰位、峰型、相对强度因有机宝石的品种不同而有所区别。苯环中CH的伸缩振动与弯曲振动组合频吸收峰(4 061和4 179 cm-1±)、CH伸缩振动与苯环骨架振动的组合频吸收峰(4 621和4 683 cm-1±)为经过有机物充填处理的宝玉石的特征谱峰,其中,与苯环有关的吸收峰,表示样品经过充填处理,指示样品中环氧树脂的存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号