首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
中国绿松石矿产资源丰富,是世界上主要的绿松石产出国家之一。绿松石作为一种名玉,以其独特的绿色及结构,深受人们的喜爱,也导致市场上出现了大量的优化处理品及仿制品。在旅游珠宝进一步发展的同时,打着“原产地”噱头的绿松石价格起伏非常大,对比同一地点的天然及仿制品玉石,在前人研究的基础上仍需要进一步积累数据。论文以中国湖北竹山秦古镇小巴寨750矿洞采集的天然绿松石与购买于湖北竹山县城珠宝市场的绿松石仿制品为研究对象,采用光学照片、场发射扫描电镜及能谱、红外和拉曼光谱等,从颜色、微形貌、微成分微结构的角度开展对比研究。研究结果表明,天然绿松石样品的颜色多样,呈“月白色-浅蓝色-蓝绿色-黄绿色-绿色-蓝色”的蓝绿色系列变化,晶体颗粒十分细小,呈微米级-纳米级,可见短柱状、层片状晶粒;绿松石仿制品颜色单一,常为较为呆板的绿色,多为散漫分布的颗粒状集合体,且颗粒多呈三方晶系、方解石型结构;天然绿松石主要成分为Al2O3 32.12%,P2O5 30.51%,CuO 10.75%,Fe2O3 5.57%等,为铜铝磷酸盐矿物。绿松石仿制品中主要元素组成为MgO 42.62%,Al2O3 2.66%,SiO2 2.66%等,其成分是以碳酸镁为主的菱镁矿;在红外光谱的对比研究中,天然绿松石样品的红外光谱图的3 083~3 509 cm-1区域,含有大量对应于ν(OH),ν(H2O)的红外吸收峰。绿松石仿制品在2 922 cm-1处有对应于νas (CH2)的红外吸收谱峰,该峰与其被染色有关。这些红外吸收峰也是区分天然绿松石与仿制品的有效指纹峰;在拉曼光谱图的对比研究中,天然绿松石样品的拉曼光谱图中往往具有分别对应于ν(OH),ν(H2O),ν(PO4)的散射峰~3 470,~3 270和~1 039 cm-1,而绿松石仿制品不存在此类拉曼散射峰,他们是区分天然绿松石及其仿制品的有效拉曼指纹峰。基于颜色、微成分、微结构及振动光谱可以有效区分同一地区天然绿松石与其仿制品。此类方法对于其他类型旅游珠宝与其仿制品的鉴定亦有重要的参考价值。  相似文献   

2.
湖北省十堰市竹山县秦古镇小林扒矿区产出了一类较为特殊的绿松石。这类绿松石颜色多为浅绿色、浅黄绿色或浅苹果绿色,产出原石具滑感,性脆,亦称之为“油松”。与其结构细腻度相当的绿松石原料相比,此类绿松石密度普遍明显偏低,硬度偏小;经传统有机结合剂充填处理后,致密度及硬度均未见明显改善,无法作为首饰级材料使用,造成绿松石这类不可再生的宝贵资源严重浪费。以“油松”为研究对象,采用常规宝石学测试仪器、红外吸收光谱仪、X射线粉晶衍射仪、电子探针仪以及环境扫描电子显微镜等对其化学组分及显微结构特征等进行测试,为有效利用这类绿松石资源提供科学依据。测试结果表明,“油松”的相对密度为2.04~2.22;在长波和短波紫外光下荧光反应均显示为惰性。“油松”的红外吸收光谱谱带主要分布在3 700~3 090 cm-1以及1 638~466 cm-1范围内,其中3 509和3 462 cm-1处峰形尖锐的OH致吸收光谱、3 277和3 090 cm-1 附近较宽缓的结晶水致吸收光谱特征与绿松石的官能团区吸收特征一致。“油松”在高频区3 700和3 622 cm-1处具有高岭石或蒙脱石中OH 致弱红外吸收谱峰。在1 638 cm-1附近均出现有强度中等的较为宽缓的吸收峰,该吸收峰与绿松石中H2O的弯曲振动致吸收谱峰一致。指纹区的吸收峰峰形及峰位均与一般绿松石有较大差异,为Si-O及P-O的混合吸收谱峰。“油松”的主要化学组成元素为Si,Al和P,含有少量的Fe和Cu,并含有微量的Mg,Ca及Cr。组成元素的氧化物含量分别为:w(SiO2):25.60%~30.90%,w(Al2O3):26.55%~28.29%,w(FeOT):5.35%~5.90%,w(P2O5):22.00%~23.52%,w(CuO):5.10%~5.87%。“油松”中的Al2O3和P2O5的含量均低于绿松石成分理论值及其他各产地的天然绿松石。相对于天然绿松石中较低的SiO2含量(0.02%~0.12%),“油松”中SiO2的含量明显偏高,均高于25%。“油松”的主要组成矿物为绿松石,并含有一定量的粘土矿物蒙脱石及蒙脱石-高岭石,其硬度低,具有滑感,是“油松”硬度低,具有滑感且优化处理效果不显著的主要原因。  相似文献   

3.
绿松石的激光拉曼光谱研究   总被引:1,自引:0,他引:1  
对湖北、安徽地区绿松石进行了激光拉曼光谱测试分析。结果表明,绿松石中H2O,OH-及PO3-4的基团振动是导致其激光拉曼光谱形成的主要原因。3 510~3 440 cm-1的谱峰是由ν(OH)伸缩振动所致,其中ν(OH)振动导致的强拉曼特征谱峰在3 470 cm-1附近,ν(H2O)伸缩振动致拉曼谱峰位于3 290~3 070 cm-1附近的较为宽缓的弱谱峰处;由ν3(PO4)伸缩振动致强拉曼特征谱峰在1 200~1 030 cm-1之间,其中ν3(PO4)振动导致的强拉曼特征谱峰在1 039 cm-1附近,ν4(PO4)弯曲振动位于650~540 cm-1范围,ν2(PO4)的弯曲振动谱峰位于500~410 cm-1处;不同产地、不同结晶类型的绿松石表现出的拉曼谱峰特征基本一致。  相似文献   

4.
近年来,市场上出现了一类利用新型无机结合剂处理的绿松石,经此类方法处理的绿松石与天然绿松石极为相似,普遍表现为结构细腻、呈现玻璃-蜡状光泽,行业上称之为“加瓷”处理绿松石(简称“加瓷”绿松石)。采取常规宝石学仪器、红外吸收光谱仪、紫外-可见分光光度计以及能谱色散型X射线荧光光谱仪对“加瓷”绿松石的宝石学性质、振动光谱特征以及化学成分组成特征进行了系统的研究和分析。研究结果显示:“加瓷”绿松石样品的密度大都小于2.200 g·cm-3,与处理前密度有关,故用于“加瓷”处理的样品以密度较低的绿松石为主;“加瓷”绿松石均表现为典型的低密度、较细腻的结构外观和蜡状-玻璃光泽的组合特征,与品质相当的天然绿松石特征不一致,可作为“加瓷”绿松石重要的辅助性鉴别特征。“加瓷”绿松石在长、短波紫外荧光下的发光性与天然绿松石近于一致;显微观察下铁线、裂隙凹陷处常出现白色融出物,孔道内可见毛发状结晶体。“加瓷”绿松石的主要化学成分与天然类似,以CuO,Al2O3和P2O5为主,并含有一定量的FeOT(铁的氧化物),ZnO、SiO2,K2O和CaO。其中,“加瓷”处理绿松石样品中SiO2含量基本在6.40%以上,均高于天然绿松石中的SiO2含量(1.96%~6.25%),而Al2O3和P2O5含量都较天然绿松石偏低,磷铝比例基本与天然绿松石一致,为1.10左右。利用“加瓷”绿松石较高的SiO2含量和表面特征可将其与天然绿松石进行有效鉴别。“加瓷”绿松石与天然绿松石的红外吸收光谱特征基本一致。“加瓷”绿松石的UV-Vis光谱表现为620~750 nm处的吸收峰以及425 nm附近处较为锐利的吸收峰,因颜色不同峰位稍有偏移,但总体与天然绿松石的UV-Vis光谱特征趋于一致。  相似文献   

5.
绿松石的仿制品由来已久,早期主要以染色压制碳酸盐为主,后期陆续出现天然矿物的绿松石仿制品,如染色磷铝石、染色玉髓以及染色菱镁矿等,这些仿制品普遍不具有天然绿松石的颜色和结构特征,物理和光学性质与天然绿松石也有较大差异。选取市场上新出现的一类绿松石仿制品为研究对象,采用常规宝石学测试方法、红外吸收光谱及X射线粉晶衍射重点对其矿物组成、宝石学性质以及结构特征进行了研究。研究结果表明:该类绿松石仿制品表面可见角砾状构造,铁线浮于表面,分布形态单一,蓝色样品上可见明显的深蓝色颗粒,白色样品上见少量黑色点状物质,为典型的压制处理特征,蓝色绿松石仿制品则经染色压制处理。此类绿松石仿制品折射率在1.54~1.58,较天然绿松石低并具明显的蓝白色紫外荧光,可作为鉴别其与天然绿松石差异的重要证据。X射线粉晶衍射说明该类绿松石仿制品主要由顽火辉石与石英组成。红外吸收光谱显示该类绿松石仿制品的吸收谱峰主要表现为顽火辉石的典型吸收光谱,在1 088和799 cm-1附近的吸收峰则与石英中的Si—O和Si—O—Si伸缩振动有关;2 947和2 882 cm-1附近的吸收峰与外来的有机树脂中CH2的伸缩振动有关,1 736和1 510 cm-1附近的吸收峰,则由CO伸缩振动和CH2的弯曲振动所致。  相似文献   

6.
对来自坦桑尼亚Merelani地区的坦桑石样品,分别采用电子探针、EMXPLUS型ESR谱仪、同步热分析仪、紫外可见光谱仪以及傅里叶变换红外光谱仪进行了测试与分析。结果表明:坦桑石样品的主要成分为SiO2,Al2O3和CaO,微量成分中V2O5含量相对最多,平均含量为0.36%;坦桑石样品本身不含吸附水,结晶水, 加热至780 ℃附近时,脱失结构水,样品中结构水大约占总质量的2%;ESR实验结果中显示出明显Fe3+和Mn2+的电子顺磁信号;紫外-可见光谱显示,样品在385 nm处出现吸收窄带,575和750 nm处分别出现较为宽缓的吸收;红外光谱测试表明,样品在6 500~9 000 cm-1波段的倍频振动区,基本没有吸收。在4 000~6 500 cm-1波段主要为和频振动,5 956 cm-1附近呈较宽缓的吸收峰,5 413,5 184,4 336和4 046 cm-1处出现较尖锐的吸收峰,主要可能由O-H,矿物内的Si-O,以及空气里面的H2O分子和CO2振动所引起。综合EPMA以及ESR分析结果,蓝-紫色坦桑石颜色可能主要由V3+和V5+共同引起,Fe3+晶体场的d-d电子跃迁、Fe2+→Ti4+的电荷转移辅助致色。  相似文献   

7.
利用常规宝石学仪器、电子探针、傅里叶变换红外光谱仪、激光拉曼光谱仪、紫外-可见分光光度计和三维荧光光谱仪等,对马达加斯加黄色方柱石的宝石学性质及谱学特征进行了研究分析。马达加斯加方柱石的宝石学特征与方柱石理论值基本一致;方柱石样品颜色均匀,具有玻璃光泽,原石晶型较为完好且表面普遍可见纵纹及褐红色杂质,部分样品表面可见晕彩效应,样品内部可见多种包裹体,如黑云母、无色晶体包裹体等。红外光谱分析结果表明,样品在指纹区均显示1 039,1 105和1 196 cm-1处 Si(Al)—O伸缩振动吸收峰;752 cm-1处Si—Si(Al)伸缩振动吸收峰;551,687和624 cm-1处O—Si (Al)—O 弯曲振动吸收峰;459 cm-1处Si—O—Si的弯曲振动与Na(Ca)—O伸缩振动的耦合吸收峰;416 cm-1处Si—O—Si弯曲振动吸收峰。红外光谱官能团区的诊断性鉴定依据为:3 530和3 592 cm-1处O—H振动引起的吸收峰;2 499,2 629和2 964 cm-1处CO2-3振动产生的吸收峰。拉曼光谱分析结果表明,桥氧弯曲振动产生459和538 cm-1两处吸收峰;Al—O振动导致775 cm-1吸收峰;硅氧四面体Q4结构单元振动产生1 114 cm-1吸收峰。紫外-可见光吸收光谱可知,马达加斯加方柱石为过渡金属元素致色,铁离子的存在导致了379和420 nm两处吸收峰,且420 nm吸收峰的强弱影响着方柱石的颜色深浅。致色原因为占据了晶体结构中四面体位置的Fe2+与Fe3+之间电荷转移,从而产生黄色。三维荧光光谱分析显示,方柱石具有较为一致的发光行为,均可见一强一弱两个荧光峰,多集中在302 nm(λex)/343 nm(λem)附近。电子探针成分分析结果表明样品属于方柱石族系列中的针柱石,Ma值范围为66%~69%, 平均Ma值为68.1%,且随着Ma值的增高,双折射率随着变小。谱学测试作为无损测试技术,适用于鉴定宝石品种。对鉴定马达加斯加方柱石具有重要的意义,同时为产地溯源、区分优化处理品种提供数据支持。  相似文献   

8.
黑龙江穆棱地区宝石级石榴石的宝石学及谱学特征   总被引:1,自引:0,他引:1  
对黑龙江穆棱新生代玄武岩产出的宝石级石榴石进行了宝石学常规测试、电子探针测试、拉曼光谱、红外光谱和紫外-可见光谱测试,以获得该区石榴石的宝石学特征和谱学特征。化学成分分析表明,该区石榴石为镁铝榴石,含有Fe,Ca,Mn,Cr,Ti等杂质元素。其平均晶体结构化学式为 (Mn0.022Ca0.455, Fe2+0.720, Mg1.793)=2.990(Ti0.003Cr0.009Fe3+0.062Al1.951)=2.025(SiO4)3。拉曼光谱分析表明该区石榴石存在混合相,由石榴石桥氧振动引起的拉曼位移峰反映出该特征。镁铝榴石桥氧弯曲振动拉曼位移峰位于560 cm-1(A1g模)和641 cm-1(Eg+F2g模),钙铝榴石和铁铝榴石桥氧弯曲振动Eg+F2g模形成的拉曼位移峰分别位于507和486 cm-1。官能团区红外光谱显示该区镁铝榴石中不存在分子水,但少数镁铝榴石中存在少量的结构水,它们在3 585,3 566和3 544 cm-1处形成阶梯状的弱小吸收峰。该区镁铝榴石多为褐红色,其颜色由杂质离子Cr3+,Fe3+,Mn2+产生。紫外-可见吸收光谱显示,Fe3+的电子跃迁致570,521和502 nm吸收峰,Mn2+的电子跃迁致460和430 nm吸收峰,Cr3+电子跃迁致690和367 nm吸收峰。  相似文献   

9.
“水波纹”绿松石是一种在外观上呈现水波纹状花纹图案的天然绿松石,产量稀少却深受消费者喜爱,前人对绿松石的研究较丰富,但对“水波纹”绿松石的研究较少。对一块基底呈浅蓝白色,条纹呈蓝绿色的“水波纹”绿松石样品用显微激光拉曼光谱仪、显微红外光谱仪、微区X射线衍射、激光剥蚀电感耦合等离子体质谱仪、扫描电镜、显微紫外-可见-近红外光谱仪等测试其各种性能。结果表明,条纹区与非条纹区的主要矿物均为绿松石;红外光谱和拉曼光谱均显示绿松石的光谱;条纹区与非条纹区的化学成分不同,条纹区Al2O3,SiO2,MgO,V,Co,Ni,U及Y,Mo,Cd的含量较非条纹区含量高,而非条纹区P2O5,CuO,K2O及Na2O的含量较条纹区含量高;扫描电镜微形貌显示,条带区的晶体多为厚板状、晶体颗粒大、排列紧密,几乎不可见孔隙,非条带区的晶体多为大小不一的柱状、碎片状,杂乱排列,可见孔隙;微区X射线衍射表明条带区的结晶度较非条带区的结晶度高;显微紫外-可见-近红外光谱表明条带区与非条带区的致色离子相同,均在426和660 nm处有可见吸收峰,致色离子均为Fe3+和Cu2+。“水波纹”绿松石样品的谱学特征表明,条纹处与非条纹处的颜色差异与致色离子没有明显关系,而颜色及透明度差异与绿松石的结晶程度、致密程度有主要关系,“水波纹”绿松石中绿松石结晶度的变化表明了绿松石形成环境的不稳定性,结晶度的周期性变化表明了形成绿松石的外界环境具有周期性变化的规律,为研究绿松石的颜色成因及绿松石的成矿环境提供数据支撑。  相似文献   

10.
采用高温固相法制备不同浓度Tb元素掺杂的硅铝酸盐荧光材料。当烧结温度为1 350 ℃时其荧光强度达到最大值。通过X射线衍射图谱可知体系中基质材料为CaAl2Si2O8,Tb元素以Ca2Tb8(SiO4)6O2相存在。通过拉曼光谱分析可知,870 cm-1处振动峰与Ca2Tb8(SiO4)6O2中Tb与硅氧四面体的伸缩振动相关;Tb原子与硅氧四面体之间的弯曲振动产生408 cm-1振动峰。随着Tb掺杂量的增加,拉曼振动峰强度,荧光分光光度计测得的荧光光谱以及拉曼光谱仪测得的光致发光光谱的峰强均呈现先增后减的变化规律。该体系中Tb元素与硅氧四面体匹配数量逐渐增加,当Tb掺杂量超过一定极限值时,体系内发生浓度猝灭,导致荧光性能下降。采用325 nm激光作为激发光源,用拉曼光谱仪的光致发光测量模式产生的峰形与传统荧光分光光度计的光谱曲线一致,但其光谱分辨率明显高于传统荧光分光光度计获得的光谱,有助于对细微能级跃迁现象加以区分。  相似文献   

11.
墨西哥Sonora(索诺拉州)锌绿松石的矿物学及谱学特征   总被引:1,自引:0,他引:1  
锌绿松石少见产出,在现有研究和报道中也甚少提及。墨西哥索诺拉州是美洲绿松石的一个重要产地,所产绿松石于近期活跃在市场上。采用常规宝石学测试、X射线荧光能谱测试、X射线粉晶衍射分析、傅里叶变换红外光谱测试、紫外-可见光光谱测试等方法,对该产地绿松石的化学成分、物相组成、系列光谱学特征等方面进行系统的分析,并初步探讨其矿床成因。结果表明,墨西哥绿松石的颜色以淡蓝色和青白色为主,外观上以大量肉眼可见、分布在基体和围岩中自形程度极高的黄铁矿团块以及围岩中少见的呈放射状生长的镁电气石等特征显著区别于其他产地的绿松石。其化学成分以质量分数大于1的ZnO/CuO比定义为含铜锌绿松石,属于绿松石-锌绿松石类质同像系列接近锌绿松石的端员矿物,且由于与铜矿床共生,墨西哥绿松石中(CuO+ZnO)的含量偏高。XRD测试结果表明,墨西哥绿松石的主矿物相为锌绿松石,与EDXRF的测试结果相吻合,其常见的矿物组合为锌绿松石+石英+钾长石+镁电气石,这一组合方式在前人研究中并不常见。红外光谱特征由结构中的羟基、水合离子及磷酸根基团的振动特征共同决定,其中羟基的振动峰主要出现在3 400~3 700 cm-1范围,水合离子的振动峰位于3 000~3 300 cm-1,磷酸根基团引起的振动峰则出现于1 000~1 200和400~650 cm-1的指纹区。该地区所有样品中均显示其他产地绿松石少见的3 732 cm-1处的红外吸收峰,从某种意义上具有一定的产地指示作用,同时选择对红外光谱中的3 500~3 600 cm-1范围与氢键最强的结构水相关的区域进行积分处理,其积分面积能够辅助判断样品中水的含量。紫外-可见光光谱显示,在256和430 nm处分别有由O2--Fe3+和Fe3+引起的谱峰,位于670 nm处与Cu2+电子禁戒跃迁相关的谱带被以852 nm为中心的由Fe2+电子跃迁形成的宽缓谱带所包络,最终显示为以800 nm为中心的由Cu-Fe离子联合作用而形成的谱带。从伴生矿物组合、矿物结构构造、地质特征等方面综合推测,墨西哥锌绿松石是与该区斑岩型铜矿床伴生的非金属矿种,其成因属于典型的中酸性火山岩热液蚀变型。  相似文献   

12.
烧结粘土产品可以吸收水分子发生再羟基化,生成结构羟基的量与产品保存时间存在一定关系,基于该理论可以利用热重分析方法对陶器制品进行测年研究。红外与拉曼光谱技术也可以用来分析结构羟基信息,因此人们希望探索利用光谱分析方法代替热重法进行传统陶瓷无损测年分析。为了验证可行性,收集了多种典型矿物原料和可溯源的传统陶瓷样品,利用红外光谱和拉曼光谱分析它们内部结构羟基的情况。两种方法都可以观测到正长石、瓷土和高岭石中铝羟基在3 600~3 700 cm-1范围内的特征峰。分析传统陶瓷样品时,红外光谱中未在这一范围内观测到结构羟基的峰位。利用拉曼光谱分析,激发光波长为532 nm时可以在多种类型陶瓷产品的光谱3 600~4 000 cm-1范围内观测到两个明显的谱峰。改变光源波长,不能在相应区域观测到谱峰。但当光源波长为514 nm时,可在4 288和4 512 cm-1处观测到两个谱峰。将拉曼谱图转换为波长显示模式,激发光波长为532和514 nm时观测到的谱峰都可对应在约659和669 nm处。基于分析结果,推知当激发光波长为532 nm时,在拉曼光谱中3 600~4 000 cm-1范围内观测到的两个谱峰不是结构羟基的特征峰,而是较为尖锐的荧光峰。在目前技术条件下,拉曼和红外两种光谱学手段难以应用于我国高温陶瓷产品的再羟基化测年研究。  相似文献   

13.
“海纹石”的矿物学及谱学特征研究   总被引:1,自引:0,他引:1  
“海纹石”是具有蓝色条带的针钠钙石,是一种稀有的宝石材料,具有较好的市场前景。为查明其矿物学特征及成因,采用常规宝石学测试并结合X射线衍射(XRD)、傅里叶红外吸收光谱(FTIR)、拉曼光谱(Raman)、扫描电镜(SEM)及紫外-可见分光光度计(UV-Vis)等现代测试方法,对“海纹石”不同颜色部分的矿物成分及特征进行了深入分析。XRD,FTIR,Raman分析结果表明,“海纹石”的主要组成矿物为针钠钙石,并含有少量的方解石,与SEM分析结果较为一致。FTIR分析显示,“海纹石”白色部分在1 500 cm-1处出现一个明显的宽吸收带并伴有883和710 cm-1的吸收峰,表明含有少量方解石,而蓝色部分在该处没有此吸收。紫外可见吸收光谱分析显示蓝色部分在可见光区有640 nm宽吸收峰,表明可能含有微量元素Cu。“海纹石”白色和蓝色部分矿物组分的差异,表明两者可能形成于不同的地质环境。  相似文献   

14.
己酸乙酯分子的振动光谱研究   总被引:1,自引:0,他引:1  
采用B3LYP混合泛函和6-31G基函数组,并对重原子和轻原子使用离散函数和极化函数, 利用密度泛函理论(density functional theory, 简称DFT)计算了己酸乙酯的分子振动光谱,并以此为依据,首次对实验测得的己酸乙酯(Ethyl hexanoate)分子的正常拉曼光谱(NRS)和红外光谱(IR)进行了指认,对己酸乙酯分子的振动模式进行了归属。理论计算和实验数据的比较分析表明,理论计算结果的拉曼和红外各振动峰位与实验测量结果符合得较好。最后,分别把拉曼光谱和红外吸收谱中较强的峰位指认为己酸乙酯分子的拉曼特征峰和红外吸收的特征峰。己酸乙酯分子振动光谱的上述研究,可能在白酒调香,化工和生物等领域的检测方面具有广泛的应用,对进一步拓宽己酸乙酯分子的研究领域具有一定的参考价值。  相似文献   

15.
巴基斯坦Swat矿区祖母绿以饱和绿色和高净度著称,其价格逐年攀升,如何有效鉴别Swat矿区祖母绿的特征成为当前的研究热点。采用常规宝石学仪器、电感耦合等离子质谱、红外光谱、拉曼光谱和紫外-可见吸收光谱对该矿区祖母绿的宝石学及谱学特征进行研究,并探讨其颜色成因。结果显示:(1)Swat矿区祖母绿晶体常为六方柱状,且净度较高。样品颜色呈明亮的绿色,具有中等至强的二色性(黄绿/蓝绿色)。折射率偏高,约1.588~1.599,与晶体碱金属含量高有关。(2)晶体中部分Al与Mg,Fe,Cr等发生类质同象置换。其中替换最多的是Mg元素,含量达11 402~12 979 ppma(平均为12 446 ppma);Fe和Cr元素次之(平均含量分别为2 390和2 199 ppma)。样品中碱金属元素(Na,K,Rb,Cs)含量很高,总量约14 201~16 136 ppma,平均为15 183 ppma。(3)红外光谱显示指纹区1 312,1 152,983,838,701,616和559 cm-1处的吸收峰,由[Si6O18]等基团振动所致。近红外区可见较强的Ⅱ型水振动相关吸收峰(7 074 cm-1),说明样品中存在较多Ⅱ型水,与晶体中碱金属离子含量较高相符。拉曼光谱显示324,399,516,685和1 067 cm-1等祖母绿的拉曼位移,并检测到气液包裹体相关的H2O (3 595 cm-1)、CO2(1 284和1 284 cm-1)和N2(2 327 cm-1)以及伴生矿物滑石和磁铁矿的拉曼位移。(4)紫外可见-吸收光谱(UV-Vis)测试结果显示有Cr3+(688~641 nm),V3+(610 nm),Fe2+(860 nm)和Fe3+(375 nm)相对应的吸收峰。样品中Fe元素含量为1 124~3 561 ppma,Cr元素含量为730~3 077 ppma,V元素含量较少,为28.01~263.9 ppma。不同样品中Cr元素含量差距较大,V元素含量差距小,Cr和V离子数比值约3.43~60.05。随着样品颜色饱和度增加,Cr元素含量急剧增大,V元素含量增加极少,Fe元素含量反而降低。推测Swat矿区祖母绿主要致色元素为Cr,其次为V,其色调和荧光可能受Fe元素影响。  相似文献   

16.
国际珠宝交易市场上最近出现了一批价值不菲的无色透明的宝石级钠沸石刻面成品,为提供快速区分其与仿制品材料的依据,文章通过红外光谱和拉曼光谱对三颗钠沸石样品的振动光谱进行了研究。结果表明, 其红外光谱主要表现为:4 000~1 200 cm-1的吸收峰是结构中水导致的吸收;1 200~600 cm-1 的强吸收与TO4四面体的内部T—O(T为Si或Al)的反对称和对称伸缩振动有关。拉曼光谱散射峰主要分布在300~600和700~1 200 cm-1两个区间。300~360 cm-1处较弱强度的拉曼散射峰是由于结构中水分子所导致。482 cm-1处中等强度的峰归属于硅氧四面体内部由于变形导致的拉曼位移。726 cm-1处的拉曼散射峰归属于Al—O的伸缩振动;974,1 038,1 084 cm-1的三处拉曼散射峰都是Si—O的伸缩振动导致的拉曼位移。  相似文献   

17.
使用激发光为785 nm的便携式拉曼光谱仪分别对赤星病菌、谷镰刀病菌和香蕉炭疽悬浮液进行了普通拉曼光谱和表面增强拉曼散射(SERS)光谱检测。实验结果显示,微波法制备的纳米银胶对三种植物病菌均具有较好的增强效果,同时获得了三种病菌信噪比较好的SERS光谱。从整体上看,三种菌谱峰峰强分布具有一定的相似性,如在481 cm-1处均为最强谱峰,500~1 000 cm-1谱峰较弱和1 000~1 600 cm-1谱峰较强。但三者在谱峰的分布和峰形上仍有明显不同,因此通过比较三种病菌的不同SERS谱峰可对其进行快速区分和鉴别。  相似文献   

18.
湖北与安徽产高品质绿松石的红外与拉曼光谱特征及意义   总被引:1,自引:0,他引:1  
近年来,市场对高品质绿松石的产地识别需求愈加迫切,然而,相应的研究尚少。湖北秦古、文峰和安徽笔架山产有结构致密细腻、光洁坚韧,蓝色的绿松石。它们的谱学特征基本一致,但在峰位或强度上存在可以识别的差异。红外光谱特征中,由δ(OH)弯曲振动引起的783 cm-1附近谱带在秦古样品中表现为797和779 cm-1分裂峰,在文峰样品中表现为787 cm-1峰,在笔架山样品中表现为783 cm-1峰。不同产地的R=I783 cm-1/I837 cm-1值不同,秦古样品R值在0.98以上,文峰样品R值在0.85左右,笔架山样品R值集中在0.91~0.94。属于ν4(PO4)伸缩振动内的609 cm-1附近谱带在文峰样品中较明显且强度大,在秦古样品中峰形略宽、强度稍弱,笔架山样品在该处吸收平缓且强度很小。拉曼光谱中在3 500 cm-1附近笔架山样品的峰位波数明显较湖北秦古和文峰样品的大(为3 506和3 505 cm-1),而湖北所有样品的此峰均低于3 500 cm-1(3 495~3 500 cm-1),可能由水组分的不同造成的,且其在3 472 cm-1附近的峰强度明显偏大。同样情况发生在由ν4(PO4)弯曲振动引起的551 cm-1峰,可能为微量元素Zn的含量差别所致。以上特征可作为识别湖北和安徽两产地绿松石的重要谱学标志,结合其外观特征,可以将二者有效区分。以上研究结果还具有潜在的考古学价值。  相似文献   

19.
对中国寿山田黄石进行了X射线粉晶衍射(XRD)、红外光谱和拉曼光谱测试, 以获得田黄的谱学特征。研究表明田黄有地开石质、珍珠陶石质和伊利石质三类,其红外特征吸收峰分别为3 621,3 629和3 631 cm-1,拉曼特征峰分别为3 626,3 627和3 632 cm-1,3 550~3 750 cm-1间OH振动所致拉曼谱峰与红外结果一致。地开石质田黄含无序、有序两类,无序地开石OH3振动吸收峰相对有序地开石向低波数方向移动8 cm-1,相对强度增强,无序结构可能与高含量的Fe有关。3 550~3 750 cm-1间地开石OH振动红外吸收峰强于珍珠陶石,表现为珍珠陶石质田黄的红外光谱明显叠加有副矿物地开石的强吸收峰。伊利石质田黄主要为2M1型伊利石,并含有少量1M型伊利石。这些特征为科学鉴定田黄提供了理论依据。  相似文献   

20.
莫桑比克摩根石的谱学特征研究   总被引:1,自引:0,他引:1  
近几年摩根石凭借它独特的色彩悄然兴起。采用常规仪器测试、激光剥蚀等离子质谱(LA-ICP-MS)、紫外-可见吸收光谱(UV)、红外光谱(IR)和拉曼光谱(Raman),对产自莫桑比克的摩根石基本性质、化学成分特征、谱学性质进行了较为详细的分析。紫外-可见光谱获得样品主波长、饱和度、明度等相关颜色参数;成分测试显示样品摩根石中Li,Rb,Cs,Mn等含量较高,计算所得到的晶体化学式为Be3.2090Al2.0757Li0.425Si5.664O18(Na0.1420Cs0.1316);红外光谱显示,摩根石的结构振动区主要在指纹区400~1 200 cm-1,其中900~1 200 cm-1为Si—O—Si环的振动区,550~900 cm-1为Be—O振动区,而450~530 cm-1为Al—O振动区。由于摩根石中的Cs元素的含量较高,而Cs为原子序数较高的元素,其存在可能令Si—O—Si环振动谱峰向低频位移。拉曼光谱显示1 065 cm-1为Si—O非桥氧伸缩面内振动,1 000 cm-1左右为Be—O的非桥氧伸缩面外振动,685 cm-1为Si—O—Si的变形面内振动,400 cm-1为O—Be—O的面外弯曲振动,在390 cm-1处为Al—O的面外变形振动,在320 cm-1处为Al—O的面外弯曲振动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号