首页 | 本学科首页   官方微博 | 高级检索  
     检索      

热处理棕褐色电气石光谱学特征与颜色成因初探
作者单位:广州城市理工学院珠宝学院,广东 广州 510800;广州城市理工学院珠宝研究所,广东 广州 510800;广州城市理工学院珠宝学院,广东 广州 510800;周大福珠宝金行(深圳)有限公司珠宝检验中心,广东 深圳 518081
基金项目:国家自然科学基金项目(41403032),广东省教育厅特色科研类项目(CQ180002)和华南理工大学广州学院优博项目(YB1700001)资助
摘    要:电气石属三方晶系的硼铝硅酸盐,主要有铁电气石、锂电气石、镁电气石、钠-锰电气石等品种,因含不同的过渡元素或色心而呈绿、蓝、黄、红、粉、棕和黑色。选取棕褐色电气石样品在还原和中性气氛加热3 h,结果显示,600 ℃晶体出现大量裂隙;500和450 ℃棕褐色调减弱,透明度大大提升,500 ℃裂隙稍多;350 ℃加热,样品变绿黄棕色;250 ℃加热样品略微变浅,仍为棕褐色调;加热后∥c轴切面见明显绿色与棕色二色性,垂直c轴切面,即{0001}面,为棕色;综合显示,最佳变色温度在450~500 ℃。利用X射线荧光光谱(XRF)、红外吸收光谱(IR)和紫外-可见光吸收光谱(UV-Vis)对热处理前后样品进行分析,样品属于富Mn和Fe的锂电气石。样品中红外特征吸收峰在3 800~3 400,1 350~1 250,1 200~800与800 cm-1,近红外光谱有4 720,4 597,4 537,4 441,4 343,4 203和4 170 cm-1特征峰。热处理后,由M-OH(M为Al,Mg,Fe和Mn等)伸缩和弯曲振动所致的3 800~3 400 cm-1吸收峰减弱,600 ℃消失,与加热失水行为导致的结构水弯曲/伸缩振动减弱有关;近红外光谱4 170和4 720 cm-1吸收消失。棕褐色电气石在∥c轴切面的可见光范围内具有715,540和417 nm吸收带,依次为Fe2+ d-d(5T2g→5Eg)跃迁、Fe2+→Fe3+(IVCT)、Fe2+→Ti4+(IVCT)所致。样品具有高的Mn含量,417 nm附近的吸收可能存在Mn2+ d-d (6A1g→4A1g, 4TEg)自旋禁阻跃迁产生的413/414 nm叠加。热处理使Mn3+还原成Mn2+,Mn2+增加导致414 nm吸收峰增强,因此417 nm附近吸收带变化不大。同时,热处理后与Mn3+有关的520 nm吸收也同时消失,520 nm吸收带的存在也可能是540 nm吸收带呈非对称吸收峰的原因。450 ℃以上热处理后,715和417 nm吸收带变化不大,位于绿光区的540 nm吸收带消失,分析认为加热使得部分Fe3+还原为Fe2+,导致Fe2+→Fe3+(IVCT)减少,在∥c轴切面上540 nm吸收显著减弱。540 nm吸收带在绿色光区域,其消失导致绿色光透过,样品呈绿色。

关 键 词:棕褐色电气石  热处理  X射线荧光光谱  红外光谱  紫外-可见光谱
收稿时间:2020-07-19

Spectroscopic Characteristics and Coloring Mechanism of Brown Tourmaline Under Heating Treatment
Authors:YUE Su-wei  YAN Xiao-xu  LIN Jia-qi  WANG Pei-lian  LIU Jun-feng
Institution:1. School of Jewelry, Guangzhou City Institute of Technology, Guangzhou 510800, China 2. Institute of Jewelry, Guangzhou City Institute of Technology, Guangzhou 510800, China 3. Chow Tai Fook Jewellery & Gold (Shenzhen) Co., Ltd., Shenzhen 518081, China
Abstract:Tourmaline group belongs to the trigonal system and contains a series of Boro-Aluminosilicate minerals. It can be subdivided into lithium tourmaline, magnesium tourmaline, and sodium-manganese tourmaline. Gem grade tourmalines show various colors, due to the occurrence of different trace elements and color centers. Brown tourmalines are selected to be modified into attractive colors by 3~4 hours(h) heating treatment under oxidizing or reducing environment. We obtained such results of 250~600 ℃ step heating-treatment experiments in brown tourmalines: (1) the color of samples changed successively from brown, greenish-brown to brownish-green in 250~350 ℃; (2) the brown hue continuous faded as the transparency improved in 450~500 ℃ which indicated the optimum heating temperature; (3) the fracture in all samples enlarged when heated above 600 ℃; (4) after heating treatment, the dichroism of samples showed green and brown on the direction parallel to c-section, while brown perpendicular to c-section. The color modification mechanism of brown tourmalines before and after heating treatment were investigated in this study by mid-near infrared absorption spectroscopy (IR), X-ray fluorescence spectroscopy (XRF), and ultraviolet-visible spectrophotometry (UV-Vis). The result of XRF indicated that all tourmaline samples belonged to the lithium tourmaline group which were rich in Mn and Fe. The mid-IR absorption peaks in natural brown samples were located at 3 800~3 400, 1 350~1 250, 1 200~800 cm-1 and below 800 cm-1, while the near-IR located at 4 720, 4 597, 4 537, 4 441, 4 343, 4 203, and 4 170 cm-1. The absorption peaks between 3 800~3 400 cm-1 attributed to bending and stretching vibration of M-OH (M can be replaced by Al, Mg, Fe, Mn etc.), which decreased after heating treatment and vanished at 600 ℃. The water loss in heating treatment caused the weakening of bending vibration of structural water. The UV-Vis-spectra in natural brown samples showed 715, 540, and 417 nm absorption bend on the direction parallel to c-section, caused by Fe2+ d-d (5T2g→5Eg), Fe2+→Fe3+ inter valence charge transfer (IVCT), and Fe2+→Ti4+ (IVCT) respectively. In this contribution, all samples contain high Mn content. The presence around 417 nm absorption is possibly influenced by the superposition of 413/414 nm absorption, which attributed to spin-allowed transitions of Mn2+in d-d orbits (6A1g→4A1g, 4TEg). After heating treatment, Mn3+ was reduced into Mn2+, which led to an augment in 414 nm absorption. Simultaneously, the absorption of 520 nm vanished as the content of Mn3+ decreased. The presence of 520 nm absorption might be a reason to form asymmetrical absorption in 540 nm band. After heating treatment above 450 ℃, the absorption band of 715 and 417 nm remained unchanged, while 540 nm vanished. The vanishment of 540 nm absorption band could be caused by partial Fe3+→Fe2+ charge transference in heating treatment, which led to the reduction of Fe2+→Fe3+ (IVCT) in the direction parallel to the c-section. The vanishment of 540 nm absorption band induced transmittance increase for the green-light region, which could be the reason of green color existence after heating treatment.
Keywords:Brown tourmaline  Heating Treatment  X-ray fluorescence spectrum  Infrared spectrum  Ultraviolet-visible spectrum  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号