首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
物理学   6篇
  2022年   1篇
  2021年   2篇
  2019年   3篇
排序方式: 共有6条查询结果,搜索用时 140 毫秒
1
1.
翠榴石为石榴石家族中最为贵重的亚种,以其漂亮的外观和稀有性深受欢迎。尤其是俄罗斯所产翠榴石更是国内外收藏家最为追捧的对象。前人从不同角度对石榴石族矿物研究较多,但关于翠榴石的研究较少。为了探究俄罗斯翠榴石的化学成分及光谱学特征,运用LA-ICP-MS,IR,Raman和UV-Vis,对俄罗斯翠榴石进行系统研究,旨在获得其化学成分尤其是稀土元素特征、光谱学特征,分析致色原因,为其品种鉴定及产地溯源提供重要数据。化学成分研究表明,俄罗斯翠榴石几乎为纯的钙铁榴石(Andradite>96.39 Mol.%)。次要成分中,Cr2O3含量较高,平均0.502 Wt%,除此以外还含少量Al,Mn,Ti和V。其中Cr和V均为石榴石中致绿色的元素。稀土元素含量总体不高,∑REE平均4.85 μg·g-1;且轻稀土元素明显富集,∑LREE平均4.56 μg·g-1;重稀土元素相对亏损,∑HREE平均0.29 μg·g-1, ∑LREE/∑HREE=5.35~100.48。多数样品显示Eu正异常。主要拉曼位移为994.5,873.5,841.5,815,576,552,515,492,451,369,351,323,310.5,295,263,234.5和172 cm-1。拉曼光谱仅可作为翠榴石品种鉴定的手段之一,对其产地溯源作用不大。红外光谱研究表明,指纹区红外反射光谱可以有效鉴别翠榴石,红外光谱官能团区显示结构水的吸收峰,表明俄罗斯翠榴石含有少量结构水,这与其形成过程与热液交代作用有关。紫外-可见吸收光谱研究显示,俄罗斯翠榴石在384和440 nm处具明显吸收峰,436 nm见弱吸收峰,620 nm附近出现宽缓吸收带,从500 nm附近至紫外区强烈吸收。分析认为440 nm吸收带归于八面体位Fe3+的6A14A1g+4Eg(G)跃迁所致;620 nm吸收带归于八面体位Cr3+的4A2g(F)→4T2g(F) d-d跃迁所致,Fe和Cr同为致色元素,O-Fe荷移带及440 nm强吸收带使得钙铁榴石产生黄色、黄绿色,Cr3+的加入,产生620 nm宽缓吸收带,吸收橙黄色光,使得宝石颜色向绿色端偏移,显示纯正的绿色。拉曼光谱、红外光谱指纹区特征可以用于准确鉴定翠榴石;稀土元素特征及中红外光谱官能团区结构水特征,可以为其产地溯源提供重要信息。  相似文献   
2.
磷灰石是珠宝市场上常见的宝石品种,因颜色丰富而广受欢迎。变色磷灰石是稀有品种且价格高昂,该品种在D65光源(色温6 500 K)下呈黄绿色,A光源(色温2 856 K)下呈粉红色,其可见光光谱的谱学特征与变色成因未被详细研究。基于此,将一颗变色磷灰石晶体,沿其平行c轴和垂直c轴方向各切下一个薄片并双面平行抛光,分别测试其可见光光谱与微量元素。结果发现,其可见光光谱中谱峰较多:位于583和578 nm处的吸收双峰强度最强,位于748和738 nm处的吸收双峰强度中等,分别位于688和526 nm处的吸收峰,强度较弱。还有一些非常微弱的吸收峰,分别位于514,483,473和443 nm处。位于748和738 nm处的吸收双峰与583和578 nm处的吸收双峰共同造成了红橙光区的透射窗,583和578 nm处的吸收双峰与526 nm处的吸收峰共同造成了黄绿光区的透射窗。D65光源和A光源由于相对光谱功率分布不同,在不同透射窗的透过有所不同,导致变色磷灰石在不同光源下呈现出不同颜色。D65光源中黄绿光成分较多,透过黄绿光区透射窗的成分较多,D65光源下磷灰石呈黄绿色,A光源中红光成分较多,通过红橙光区透射窗的成分较多,A光源下磷灰石呈粉红色。因此,磷灰石的变色效应与位于748和738 nm处的吸收双峰,位于583和578 nm处的吸收双峰以及位于526 nm处的吸收峰相关。根据微量元素数据与稀土元素的晶体场理论,这些吸收峰是由稀土元素钕(Nd)导致。根据不同晶体方向样品的可见光光谱特征,平行c轴方向变色效果更好,建议加工变色磷灰石晶体时宝石台面应尽量平行c轴。该研究结合微量元素与可见光光谱分析了变色磷灰石的变色成因,并为其加工切割方向提供了指导。  相似文献   
3.
碧玺是晶体结构和化学成分都十分复杂的含硼硅酸盐矿物。在珠宝市场中最为常见的碧玺品种几乎都为锂碧玺和少量镁碧玺,目前的珠宝专业教材或相关领域的文章都对锂碧玺研究较多,而镁碧玺却少有涉及。对六颗产于莫桑比克的黄-棕黄色碧玺刻面宝石进行了宝石学常规测试、激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)测试、红外吸收光谱、紫外-可见光吸收光谱、荧光光谱和激光拉曼光谱测试,以获得碧玺样品的宝石学及谱学特征。宝石学常规测试表明,实验样品与一般常见碧玺的物理和光学性质基本符合,但所有样品在紫外荧光仪短波(254 nm)下具有中-强绿色荧光,而一般碧玺在短波下为惰性,此外,样品中均含有较多的浅色和深色的粒状矿物包裹体,且不见一般碧玺中常见的长管状包裹体、气液两相包裹体。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)分析表明,实验样品属于镁碧玺,其平均晶体结构化学式为(Ca0.15Na0.85)1.00(Mg2.89Fe0.02Al0.09)3.00Al6(Si6O18)(B0.950.05O3)3(OH)4。选取包裹体较少的样品进行红外吸收光谱测试,碧玺样品在2 000~6 000 cm-1区域内有OH和Si-O的振动峰,说明样品含有结构水。经过紫外-可见光吸收光谱测试,样品在400~500 nm内有一宽吸收峰,谱峰位置在445 nm左右,这可能与Fe2+-Ti4+的电荷转移和交换耦合的Fe2+-Fe3+离子对有关。经过荧光光谱测试,本批碧玺样品在254 nm激发光源下,产生中-强的绿色荧光,特征荧光峰为534 nm强峰及475 nm肩峰,荧光的产生原因与样品中Ti和Fe有关。对碧玺样品的主体矿物进行激光拉曼测试,测试结果符合镁电气石的拉曼光谱。该研究创新主要体现在以下两个方面:(1)研究对象经测试属于镁碧玺,其谱学特征方面尚未有详细研究;(2)实验样品在短波下具有独特的荧光现象,这一现象目前还没有其他学者提出,且笔者对荧光产生的原因进行了分析。  相似文献   
4.
红珊瑚是一种珍贵的有机宝石,自古以来因其红润的颜色与细腻的质地深受人们的喜爱与追捧。颜色漂亮的天然红珊瑚产量稀少,故有些红珊瑚会经过染色处理来改善其外观。拉曼光谱测试是鉴定红珊瑚有无经过染色处理的有力手段,故红珊瑚拉曼谱峰的归属对于鉴定有着重要的理论指导意义。由于红珊瑚拉曼峰的归属问题一直没有被深入研究,基于此,该研究测试了三颗颜色深浅不同的红珊瑚(Corallium rubrum)的拉曼光谱。同时,使用量子化学程序Gaussian 16运用密度泛函理论计算了红珊瑚中色素分子角黄素的理论拉曼光谱。创新性对比红珊瑚的实验拉曼光谱与角黄素分子的理论拉曼光谱,并进一步分析红珊瑚拉曼峰的归属。结果发现,红珊瑚的拉曼光谱中主要有1 514,1 295,1 177,1 125,1 086和1 016 cm-1拉曼峰,其中1 086 cm-1处的拉曼峰是方解石的CO2-3引起的。红珊瑚的红色越深,1 514,1 295,1 177,1 125和1 016 cm-1拉曼峰的强度越强,反之,红珊瑚的红色越浅,这些拉曼峰的强度越弱。红珊瑚拉曼光谱中的1 514,1 295,1 177,1 125和1 016 cm-1峰强与红珊瑚的红色深浅呈现出正相关的关系,故推测这套拉曼峰是由红珊瑚中的色素产生的。角黄素理论拉曼光谱中主要存在的拉曼峰位于1 512,1 269,1 189,1 159和999 cm-1处,与红珊瑚实验拉曼光谱中的1 514,1 295,1 177,1 125和1 016 cm-1峰的形状位置高度吻合。振动分析结果表明,角黄素的1 512,1 269,1 189,1 159和999 cm-1拉曼峰分别是由CC伸缩振动,C-H摇摆振动,C-C伸缩振动,C-C伸缩振动与甲基摇摆振动引起的。因此将红珊瑚拉曼光谱中的1 514,1 295,1 177,1 125和1 016 cm-1峰归属为CC伸缩振动,C-H摇摆振动,C-C伸缩振动,C-C伸缩振动与甲基摇摆振动。使用密度泛函理论的计算方法研究了红珊瑚拉曼谱峰的归属并对红珊瑚的拉曼谱峰进行了指认,为使用拉曼光谱鉴定红珊瑚提供了理论基础。同时为研究这类生物宝石材料拉曼谱峰的归属提供了一种新的方法。  相似文献   
5.
祖母绿为绿柱石族中铬(Cr)、钒(V)共同致色的宝石种,合成历史悠久,技术不断改进,新配方产品不时出现。近期市场上出现一种新型水热法合成祖母绿,颜色亮丽,外观可与哥伦比亚天然祖母绿媲美,经初步分析发现其为V致色合成祖母绿。为了探究其特征,运用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)、紫外-可见-近红外(UV-Vis-NIR)分光光度计进行详细研究,旨在获得其化学成分中致色元素含量及UV-Vis-NIR吸收光谱特征,分析致色原因,并寻求与天然祖母绿的相区别的方法,为检测机构提供重要数据信息。化学成分研究表明,该合成祖母绿为纯V致色,具有富V贫铁(Fe)的特征,铜(Cu)在不同批次样品中,含量差别较大,而Cr及其他致色元素含量大多低于检测限。作为对比的传统富Fe型水热法合成祖母绿样品,则具有高Cr高Fe的特征。此外,含有较高的镍(Ni)及微量钛(Ti),锰(Mn),Cu,而V含量则低于检测限。新型合成祖母绿的紫外-可见吸收光谱呈现典型的钒元素的吸收光谱特征,在紫区430 nm、橙红区617 nm处显示两个宽大的吸收带。此外在约390和680 nm附近分别有一肩峰,多数样品在756 nm处有一弱吸收峰。430 nm吸收带归属于V3+的d电子[3T1g(3F)→3T1g(3P)]自旋允许跃迁,617 nm吸收带归属于V3+的d电子的3T1g(3F)→3T2g(3F)自旋允许跃迁,756 nm吸收峰为Cu2+所致,该吸收光谱特征与传统富Fe型合成祖母绿明显不同。天然祖母绿大多具Fe3+,Fe2+及Cr3+的吸收光谱组合特征,较容易与该合成祖母绿区分;少数纯V致色天然祖母绿,虽然同样具有V元素特征的吸收峰,但由于同时具有在810~830 nm附近Fe2+的特征吸收带,也能与富V型合成祖母绿区别。近红外区,主要在1 402,1 467和1 895 nm处显示I型水相关吸收峰,也可与天然祖母绿区别。紫外-可见-近红外光谱是鉴定天然祖母绿与合成祖母绿的一个有效手段,但要结合其他鉴定信息,如包裹体、分子振动光谱等,避免新合成配方祖母绿的出现而导致错误的鉴定结论。  相似文献   
6.
坦桑尼亚Umba出产颜色丰富的刚玉,该研究对象是一颗来自Umba的具有特殊变色效应的蓝宝石,D65光源(色温6 500 K)下呈现淡黄色,A光源(色温2 856 K)下呈现淡紫红色。为了研究这颗变色蓝宝石紫外-可见光光谱中的谱峰归属与变色成因,该研究使用电荷补偿理论来分析此样品紫外-可见光光谱中的谱峰归属。采用紫外-可见分光光度计(UV-Vis)和激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)对这颗变色蓝宝石进行了测试。结果发现,变色蓝宝石紫外-可见光光谱中存在位于377,388和450 nm处的3个吸收峰和1个以560 nm为中心的宽缓吸收带。样品的颜色主要受450 nm处吸收峰和以560 nm为中心的吸收带影响,其中以560 nm为中心的吸收带造成了这颗蓝宝石的变色效应。根据激光剥蚀电感耦合等离子体质谱仪的测试结果,样品中主要杂质元素有Fe,Ti,Cr,V和Mg等。样品紫外-可见光光谱中377,388和450 nm处的吸收峰是由Fe3+导致。蓝宝石中的Cr3+,V3+,Fe2+-Ti4+对都可以在560 nm附近产生吸收,结合电荷补偿理论分析,刚玉中的Mg2+会优先和Ti4+进行电荷补偿,样品中Mg含量要稍微高于Ti,推测样品中几乎所有Ti4+会与Mg2+进行电荷补偿,因此样品中几乎不会存在Fe2+-Ti4+对。Fe2+-Ti4+对电荷转移产生的吸收特征具有很强的偏振性,尤其是在580 nm以后的吸收特征会随着偏振方向的改变而有很明显的变化。偏振紫外-可见光光谱测试发现以560 nm为中心的吸收带没有明显的偏振性,进一步验证了样品中几乎没有Fe2+-Ti4+对,因此以560 nm为中心的吸收带主要是由于Cr3+和V3+造成的。样品的颜色主要是由Fe3+,Cr3+和V3+引起的,而变色效应主要是由Cr3+和V3+导致。结合电荷补偿机制与偏振-紫外可见光光谱来解释这颗变色蓝宝石的紫外-可见光光谱中以560 nm为中心的吸收带的归属,为研究刚玉紫外-可见光光谱中较为常见的位于560 nm左右吸收带的归属提供了一种新的研究思路。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号