首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
A new cryptand compound carrying 2-hydroxy-1-naphthylidene Schiff base moiety (3) was designed and synthesized by reaction of the corresponding macrobicyclic amine compound (1) and 2-hydroxy-1-naphthaldehyde (2). The influence of metal cations such as Mg2+, Ca2+, Sr2+, Fe2+,Co2+, Mn2+, Zn2+, Cd2+, Hg2+, Al3+ and Pb2+ on the spectroscopic properties of the new fluoroionophore was investigated in acetonitrile-dichloromethane solution (9.5/0.5) by means of absorption and emission spectrometry. The blue shifts on the fluorescence spectrum were observed for all metal cations at 504nm. At the same time the fluorescence spectrum of the ligand showed quenching in the intensity of the signal at 504 nm for all metal cations except for Zn2+. Interaction of Co2+ with the ligand caused quenching of naphtyl fluorescence higher than 84%. The method showed good selectivity and sensitivity for Co2+ with respect to other metal cations with linear range and detection limit of 1.5 × 10−7 to 3.3 × 10−6M and 4.8 × 10−8M respectively.  相似文献   

3.
Chen  Meihui  Cao  Fengying  Huang  Shizhou  Li  Yangping  Zhong  Min  Zhu  Mingguang 《Journal of fluorescence》2022,32(4):1457-1469

Here, three Schiff bases 3a-c, differing by the substitutions (–H, –Cl, and –N(CH3)2) on the phenyl ring, have been designed and synthesized via the reaction of ortho-aminophenol with benzaldehyde, 2,4-dichlorobenzaldehyde and para-dimethylamine benzaldehyde in 1:1 molar ratio with favourable yields of 89–92%, respectively. Their structural characterizations were studied by FT-IR, NMR, MALDI-MS and elemental analysis. The fluorescence behaviours of compounds 3a and 3b exhibited a severe aggregation caused quenching (ACQ) effect in EtOH/water system. On the contrary, compound 3c had an obvious J-aggregation induced emission (AIE) feature in EtOH/water mixture (v/v?=?1:1), and exhibited excellent sensitivity and anti-interference towards Cu2+ with the limit of detection (LOD) of 1.35?×?10–8 M. Job’s plot analysis and MS spectroscopic study revealed the 2:1 complexation of probe 3c and Cu2+. In addition, probe 3c was successfully applied to the determination of Cu2+ in real aqueous samples.

  相似文献   

4.
Liu SR  Wu SP 《Journal of fluorescence》2011,21(4):1599-1605
A new 7-nitrobenz-2-oxa-1,3-diazole (NBD) derived fluorescent probe (1) exhibiting high selectivity for Cu2+ detection, produced significant fluorescence quenching in the presence of Cu2+ ion, while the metal ions Ca2+, Cd2+, Co2+, Fe2+, Hg2+, Mg2+, Mn2+, Ni2+ and Zn2+ produced only minor changes in fluorescence. The apparent association constant (K a) for Cu2+ binding in chemosensor 1 was found to be 1.22 × 103 M−1. The maximum fluorescence quenching activity caused by Cu2+ binding to 1 was observed over the pH range 6–10.  相似文献   

5.
Orhan  Ersin  Ergun  Ece  Şarkaya  Koray  Ergun  Ümit 《Journal of fluorescence》2021,31(6):1833-1842

A simple and novel Schiff base chemosensor (BMHM) based on benzimidazole was synthesized. In ethanol–water (1:1, v/v) medium on varying concentrations of Zn2+ chemosensor exhibited a strong and quick turn on fluorescence response. The Zn2+ recognition was based on the Chelation–enhanced fluorescence effect. The binding constant and limit of detection for BMHM-Zn2+ complexation were estimated to be 7.99?×?104 M?1 and 0.148 µM, respectively. The extreme fluorescent enhancement caused by Zn2+ binding in chemosensor BMHM occurred at a pH range of 6–7. The practical use of chemosensor BMHM was tested by determination of Zn2+ in real water samples and comparing the results with the data obtained using high resolution inductively coupled plasma mass spectrometry.

  相似文献   

6.

A simple fluorescent chemosensor 5-(4-methylphenyl)-3-(5-methylfuran-2-yl)-1-phenyl-4, 5-dihydro-1H-pyrazole (PY) has been synthesized for the detection of Cd2+ ion.The fluorescent probe PY shows high selectivity for Cd2+in the presence of othermetal ions (Co2+, Cu2+, Hg2+, Mn2+, Zn2+, Fe3+, Pb2+, Ni2+, and Al3+). The fluorescence intensity of the PY has been strongly quenched with increasing concentration of Cd2+ (0–0.9 μM)via photoinduced electron transfer mechanism. The binding constant of Cd2+ to PY for the 1:1 complex isfound to be 5.3?×?105 M?1with a detection limit of 0.09 μM. The chemosensor was successfully applied for determination of Cd2+ in different water samples (tap, river, and bottled water) showing good recovery values in the range of 94.8–101.7% with RSD less than 3%. Density functional theory (DFT) calculations were also performed to investigate electronic and spectral characteristics which are quite agreeable with the experimental value. The results show that the synthesized fluorescent chemosensor shows good selectivity towards Cd2+ and can be readily applied for the detection of Cd2+ in real samples including water samples.

Graphical Abstract
  相似文献   

7.
A new pyrene derivative (chemosensor 1) containing a picolinohydrazide moiety exhibits high selectivity for Cu2+ ion detection in mixed aqueous media (CH3OH:H2O = 7:3). Significant fluorescence enhancement was observed with chemosensor 1 in the presence of Cu2+. However, the metal ions Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in fluorescence for the system. The apparent association constant (K a) of Cu2+ binding in chemosensor 1 was found to be 2.75*103 M−1. The maximum fluorescence enhancement caused by Cu2+ binding in chemosensor 1 was observed over the pH range 5–8. Moreover, by means of fluorescence microscopy experiments, it is demonstrated that 1 can be used as a fluorescent probe for detecting Cu2+ in living cells.  相似文献   

8.

In this work, we introduce a highly selective and sensitive fluorescent sensor based on pyrene derivative for Fe(III) ion sensing in DMSO/water media. 2-(pyrene-2-yl)-1-(pyrene-2-ylmethyl)-1H-benzo[d]imidazole (PEBD) receptor was synthesized via simple condensation reaction and confirmed by spectroscopic techniques. The receptor exhibits fluorescence quenching in the presence of Fe(III) ions at 440 nm. ESI–MS and Job’s method were used to confirm the 1:1 molar binding ratio of the receptor PEBD to Fe(III) ions. Using the Benesi-Hildebrand equation the binding constant value was determined as 8.485?×?103 M?1. Furthermore, the limit of detection (LOD, 3σ/K) value was found to be 1.81 µM in DMSO/water (95/5, v/v) media. According to the Environmental Protection Agency (EPA) of the United States, it is lower than the acceptable value of Fe3+ in drinking water (0.3 mg/L). The presence of 14 other metal ions such Co2+, Cr3+, Cu2+, Fe2+, Hg2+, Pb2+, K+, Ni2+, Mg2+, Cd2+, Ca2+, Mn2+, Al3+, and Zn2+ did not interfere with the detection of Fe(III) ions. The fluorescence life-time of the receptor PEBD with and without Fe3+ ion was found to be 1.097?×?10?9 s and 0.9202?×?10?9 s respectively. Similarly, the quantum yield of the receptor PEBD with Fe3+ and without Fe3+ ion was calculated, and found as 0.05 and 0.25 respectively. Computational studies of the receptor PEBD were carried out with density functional theory (DFT) using B3LYP/ 6-311G (d, p), LANL2DZ level of theory.

Graphical Abstract
  相似文献   

9.
A coumarin-based fluorescent chemosensor 1 for Zn2+ was designed and synthesized. Compound 1 exhibits lower background fluorescence due to intramolecular photoinduced electron transfer. However, upon mixing with Zn2+ in 30% (v/v) aqueous ethanol, a “turn-on” fluorescence emission is observed. The fluorescence emission increases linearly with Zn2+ concentration in the range 0.5–10 μmol L−1 with a detection limit of 0.29 μmol L−1. No remarkable emission enhancement was, however, observed for other metal ions. The proposed chemosensor was applied to the determination of Zn2+ in water samples with satisfactory results.  相似文献   

10.

A Fluorescent chemosensor based on pyrene scaffold, 5-diethylamino-2-(pyren-1-yliminomethyl)-phenol (PDS) is synthesized using condensation method. It displays novel aggregation-induced emission (AIE) phenomena in its aggregated/solid state. The AIE characteristic of PDS is studied in CH3CN/H2O mixtures at different volume percentage of water and morphology of the aggregated particles are investigated by DLS and optical fluorescence microscopic study. The probe is aggregated into ordered one-dimensional (1-D) rod like microcrystals and exhibit high efficiency of solid-state emission with green colour. By taking advantage of its interesting AIE feature, the aggregated hydrosol has been utilized as ‘off–on’ type fluorescence switching chemosensor with superb selectivity and sensitivity towards Cu2+ions and the limit of detection (LOD) was calculated as low as 6.3 µM. A high Stern–Volmer quenching constant was estimated to be 2.88?×?105 M?1. The proposed chemosensor with AIE feature reveals a prospective view for the on-site visual recognition of Cu2+ ions in fluorescent paper strips and the synthesized probe is also exploited to find out the concentration of Cu2+ions in real water samples.

  相似文献   

11.
Inclusion complex of naphthalene with methyl-beta-cyclodextrin in water has been formed. The aqueous solutions of the various amounts of Co2+ve Mn2+salts have been added to naphthalene-methyl-beta-cyclodextrin (NAP-Me-β-CD) inclusion complexes. Fluorescence properties of the naphthalene (NAP) compound have been utilized to observe the changes in fluorescence intensities. Stern-Volmer quenching constants and fluorescence quantum yields have been calculated. Characterization of the resulting complex by FT-IR and 1H NMR technique has been determined. Fluorescence lifetime measurements have been made in the presence and absence of the quenching reagent and Gibbs free energy change has been calculated.  相似文献   

12.

A new ligand FIPB?=?5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl-2-boronic acid, having three cobalt(III) polypyridyl complexes [Co(phen)2(FIPB)]3+(1) {FIPB?=?5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl-2-boronic acid}, (phen?=?1,10-Phenanthroline), [Co(bpy)2(FIPB)]3+(2) (bpy?=?2,2’bipyridyl), [Co(dmb)2(FIPB)]3+(3) (dmb?=?4, 4′-dimethyl 2, 2′-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS,1H-NMR, 13C-NMR, UV-Vis and FTIR. Their DNA binding behavior has been explored by various spectroscopic titrations and viscosity measurements, which indicated that all the complexes bind to calf thymus DNA by means of intercalation with different binding strengths. The binding properties of these all three complexes towards calf-thymus DNA (CT-DNA) have been investigated by UV-visible, emission spectroscopy and viscosity measurements.The experimental results suggested that three Co(III) complexes can intercalate into DNA base pairs,but with different binding affinities. Photo induced DNA cleavage studies have been performed and results indicate that three complexes efficiently cleave the pBR322-DNA in different forms. The three synthesized compounds were tested for antimicrobial activity by using Staphylococcus aureus and Bacillus subtilis organisms, these results indicated that complex 1 was more activity compared to other two complexes against both tested microbial strains. The in vitro cytotoxicity of these complexes was evaluatedby MTT assay, and complex 1 shows higher cytotoxicity than complex 2 and 3 on HeLa cells.

  相似文献   

13.
A irreversible Hg2+ selective ratiometric fluorescence probe FR, a fluorescein fluorophore linked to a rhodamine B hydrazide by a thiourea spacer, was designed and synthesized. The developed probe FR exhibited great ratiometric fluorescence enhancement and remarkable yellow-magenta color change toward Hg2+ with excellent selectivity in aqueous acetone solution, and the ratiometric fluorescence response to Hg2+ was not interfered by other metal cations including Fe3+, Co2+, Ni2+, Cr3+, Zn2+, Pb2+, Cd2+, Ca2+, Mg2+, Ba2+ and Mn2+. The linear range and the detection limit of this supposed ratiometric fluorescence method for Hg2+ were 0.0–10.0 × 10−6 and 5 × 10−8 M, respectively.  相似文献   

14.
Jie Shao 《光谱学快报》2013,46(4):262-268
ABSTRACT

A novel colorimetric and fluorescence anion sensor based on 8-nitroquinolyl-2-aldehyde phenyl-thiosemicarbazone (1) was designed and synthesized according to the approach that the binding sites were covalently linked to the signaling units. In DMSO, sensor 1 exhibited a naked-eye color change from colorless to yellow upon complexation with acetate. The association constant of 1 for acetate ion was determined to be 1.20 × 103 M?1 by nonlinear fitting analyses of the titration curves. The strong interactions of compound 1 with acetate ion could be rationalized on basis of not only the guest basicity but also shape complementarity between 1 and acetate. In addition, the fluorescence emission of 1 was effectively quenched upon addition of acetate ions owing to the fact that the photoinduced electron transfer (PET) was enhanced.  相似文献   

15.
Two highly photostable yellow–green emitting 1,8-naphthalimides 5 and 6, containing both N-linked hindered amine moiety and a secondary or tertiary cation receptor, were synthesized for the first time. Novel compounds were configured as “fluorophore–spacer–receptor” systems based on photoinduced electron transfer. Photophysical characteristics of the dyes were investigated in DMF and water/DMF (4:1, v/v) solution. The ability of the new compounds to detect cations was evaluated by the changes in their fluorescence intensity in the presence of metal ions (Cu2+, Pb2+, Zn2+, Ni2+, Co2+) and protons. The presence of metal ions and protons was found to disallow a photoinduced electron transfer leading to an enhancement in the dye fluorescence intensity. Compound 5, containing secondary amine receptor, displayed a good sensor activity towards metal ions and protons. However the sensor activity of dye 6, containing a tertiary amine receptor and a shorter hydrocarbon spacer, was substantially higher. The results obtained indicate the potential of the novel compounds as highly photostable and efficient “off–on” pH switchers and fluorescent detectors for metal ions with pronounced selectivity towards Cu2+ ions.  相似文献   

16.

The development of a highly sensitive, selective, and efficient sensor for the determination and detection of Cr(III) ions remains a great challenge. Recently, some fluorescent chemosensors have been developed for the recognition of Cr(III) ions. But, the main drawbacks of the reported fluorescent chemosensors are the lack of selectivity and interference of anions and other trivalent cations. Herein, we designed and synthesized a novel thiazole-based fluorescent and colorimetric Schiff base chemosensor SB2 for the detection of Cr(III) ion by chemodosimetric approach. Using different analytical techniques including UV–vis, 13C-NMR, 1H-NMR, and FT-IR analysis the chemosensor SB2 was structurally characterized. The fully characterized chemosensor SB2 was used for the spectrofluorimetric and colorimetric detection of Cr(III) ions. Interestingly, chemosensor SB2 upon interaction with various metal cations including Ni2+, Na+, Cd2+, Ag+, Mn2+, K+, Zn2+, Cu2+, Hg2+, Co2+, Pb2+, Mg2+, Sn2+, Al3+ and Cr3+ displays highly selective and sensitive fluorescent (turn-on) and colorimetric (yellow to colorless) response toward Cr(III) ions. The fluorescence and UV–vis techniques confirmed the selective hydrolysis of azomethine group (-C?=?N-) of Schiff base chemosensor SB2 by Cr(III) ions. As a result, the fluorescence enhancement was observed that is corresponding to 2-hydroxy-1-nepthaldehyde (fluorophore). The chemosensor SB2 exhibits high interference performance towards Cr(III) ions over other metal cations in a wide pH range. Mover, the quite low detection limit was calculated to be 0.027 µg ml-1 (0.5 µM) (3σ/slop), lower than the maximum tolerable limits of Cr(III ions (10 µM) in drinking water permitted by the United States Environmental Protection Agency (EPA). These results show that chemosensor SB2 has great potential to detect selectively Cr(III) ions in the agricultural, environmental and biological analysis system.

Graphical Abstract
  相似文献   

17.
Wang B  Li HW  Gao Y  Zhang H  Wu Y 《Journal of fluorescence》2011,21(5):1921-1931
We synthesized a tetra-functional fluorescence probe based on dansyl and peptide motif, dansyl-Gly-Trp (DGT, 1), that efficiently bound several metal ions and showed distinguishing optical properties. The probe 1 could respond to Hg2+ with enhanced and blue-shifted fluorescence emission but to Cu2+ with obvious fluorescence quenching. In addition, 1 was sensitive to pH ranging from 2.0 to 5.0 and precipitated in the presence of Pb2+ at neutral conditions. The combination of these intrinsic properties with the selective responses to different chemical inputs allows this system to be implemented as an ionic switch. Furthermore, 1 could penetrate the cell membrane and accumulated well in intracellular region. The underlying mechanisms of the probe to different kind of metal ion were explored successfully by using either 1H NMR, NOESY, electron paramagnetic resonance (EPR) or FT-IR spectra. In addition, to investigate the binding model of 1/Hg2+ and 1/Cu2+, simulations were also performed by using density functional theory (DFT) and reasonable binding configurations were achieved for these two complexes.  相似文献   

18.
Cobalt substituted nanosized magnesium aluminates having a nominal composition MgAl2−xCoxO4 where x = 0.0, 0.5, 1.0, 1.5, 2.0 were synthesized by the chemical co-precipitation method. Aluminium (Al3+) ions were completely and successfully substituted by Co2+ ions, which yielded an electron rich terminal compound MgCo2O4. All the samples were characterized by means of X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG/DTA) and dc electrical resistivity measurements. The investigated samples were found to be spinel single phase cubic close packed crystalline materials as demonstrated by XRD data. Using the Debye Scherer formula, the calculated crystallite size was found Co2+ concentration dependent and varied between 7 and 19 nm. The lattice constant, X-ray density and bulk density were found to increase while percentage porosity decreases on increasing the Co2+ concentration. The dc electrical resistivity was found to decrease as a function of temperature as expected for a typical semiconductor. The doped Co2+ ions are believed to form small polarons and hopping of these small polarons between the adjacent sites seems to be partially responsible for conduction in the system. The activation energy of hopping of small polarons was also calculated.  相似文献   

19.
Kim  Gyeongjin  Choi  Donghwan  Kim  Cheal 《Journal of fluorescence》2021,31(4):1203-1209

A new benzothiazole-based chemosensor BTN (1-((Z)-(((E)-3-methylbenzo[d]thiazol-2(3H)-ylidene)hydrazono)methyl)naphthalen-2-ol) was synthesized for the detection of Cu2+. BTN could detect Cu2+ with “off-on” fluorescent response from colorless to yellow irrespective of presence of other cations. Limit of detection for Cu2+ was determined to be 3.3 μM. Binding ratio of BTN and Cu2+ turned out to be a 1:1 with the analysis of Job plot and ESI-MS. Sensing feature of Cu2+ by BTN was explained with theoretical calculations, which might be owing to internal charge transfer and chelation-enhanced fluorescence processes.

  相似文献   

20.
In this study, we report the synthesis of new Schiff base E-1-(((1-benzylpiperidin-4-yl)imino)methyl)naphthalenee-2-ol (L) and evaluation of its fluorescence response toward Cu2+ ion. Preliminary, solvent effect, metal selectivity and metal ligand ratio were analyzed through UV-Visible study. Fluorescence response toward Cu2+ was carried to assess the fluorescent property of synthesized Schiff base. The probe exhibited a higher fluorescence enhancement in the presence of Cu2+ over other metal ions (Ni2+, Zn2+, Hg2+, Co2+, Cd2+, Al3+, Fe2+, and Pb2+). The binding stoichiometry between L and Cu2+ has been investigated using Job’s plot and Benesi-Hildebrand equation and it was found that ligand L can form 1:1 L-Cu2+ complex with binding constant (K a) of 4?×?104 LM?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号