首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
包钴型r-Fe2O3磁粉各向异性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张林 《物理学报》1992,41(7):1167-1173
包钴型γ-Fe2O3磁粉的矫顽力可比原γ-Fe2O3磁粉提高8000—32000A/m。木文研究探讨了两种包钴型γ-Fe2O3磁粉(包钴γ-Fe2O3和包钴包亚铁γ-Fe2O3)的单轴各向异性的起源和矫顽力增大的机制。包钴γ-Fe2O3磁粉矫顽力 关键词:  相似文献   

2.
利用热中子透射法测定γ-Fe2O3的氢含量。利用差热分析、磁分析以及穆斯堡尔效应研究γ-Fe2O3的相变,实验结果表明在γ-Fe2O3结构中确实含有一定量的氢,当γ-Fe2O3结构中的阳离子空位被H1+,Co2+,Si4+,P5+等离子占据时,将 关键词:  相似文献   

3.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

4.
在γ-Fe2O3表面蒸镀不同厚度Co,观察到低Co覆盖度,Co具有很大活力与O2结合,而使Fe还原.在θ=0.2—0.8时,表面上形成类CoFe2O4.Co覆盖度进一步增加,Fe在表面偏析,Co开始形成第二层,破坏了形成这种氧化物的条件.因此,这种铁钴氧化物与单层或亚单层包钴磁粉磁性的改善可能有密切关系. 关键词:  相似文献   

5.
A neutron diffraction study was performed on a single crystal of a new compound YFe2O4 below its Néel point. In a slightly oxygen deficient crystal, the elastic magnetic scattering takes the form of Bragg line along the c axis at (n3, n3, l) (n ≠ 3m) in the hexagonal lattice. This fact indicates the two-dimensional long range order of a commensurate sinusoidal spin structure.  相似文献   

6.
CoFe2−xGdxO4 (x=0-0.25) nanoparticles were synthesized via a simple hydrothermal process at 200 °C for 16 h without the assistance of surfactant. The as-synthesized powders were characterized by X-ray diffraction, transmission electron microscopy, and a vibrating sample magnetometer. The X-ray diffraction results showed that the as-synthesized powders were in the pure phase with a doping amount of ≤0.25, and the peaks could be readily indexed to the cubic spinel cobalt ferrite. Transmission electron microscopy and high resolution transmission electron microscopy observations revealed that the gadolinium-doped cobalt ferrite nanoparticles were single crystal, roughly spherical, uniformly distributed, and not highly agglomerated. The room temperature magnetic field versus magnetization measurements confirmed a strong influence of gadolinium doping on the saturation magnetization and coercivity due to large lattice distortion and grain growth of small particles.  相似文献   

7.
The effect of particle size on the formation of vacancy-ordered superstructure in γ-Fe2O3 powders has been investigated by using X-ray, Mössbauer and chemical analyses. Powders of γ-Fe2O3 with different average particle size were prepared by chemical precipitation and subsequent heat-treatment. The X-ray diffraction intensity of the superlattice lines decreases with the particle size of γ-Fe2O3 and finally disappears at a particle-size between 300-175 Å, possibly around 200 Å. Therefore ordering of the cation vacancies in ultrafine γ-Fe2O3 particles is ruled out. Although the vacancies do not form an ordered structure, they do exclusively occupy B-sites.  相似文献   

8.
Superparamagnetic γ-Fe2O3 nanocrystallites have been prepared by γ-irradiating ferrocene in the presence of isopropyl alcohol to get Fe nanoparticles in nitrogen atmosphere and at room temperature, followed by oxidization in air to obtain γ-Fe2O3. The final black powder was characterized with X-ray powder diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). From XRD pattern and XPS spectrum, we can confirm to get γ-Fe2O3. The particle size is several nanometers as shown in TEM image. Magnetic hysteresis loop measurements exhibited that the γ-Fe2O3 nanoparticles display superparamagnetism. However, a trace black powder was obtained in kerosene oil using the same method. A possible formation mechanism of the γ-Fe2O3 nanoparticles was suggested.  相似文献   

9.
包钴型γ-Fe2O3磁粉矫顽力的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
包钴型γ-Fe2O3磁粉分为包钴γ-Fe2O3(简记为Co-γ-Fe2O3)和包钴包亚铁γ-Fe2O3(简记为CoFe-γ-Fe2O3)两种,它们的矫顽力可比γ-Fe2O3磁粉的提高100至400Oe左右,本工作对这两种磁粉矫顽力增大的原因作了探讨,认为它们矫顽力增大的机制不同:CO-γ-Fe2O3矫顽力增大是由于表面包覆一层Co(OH)2使表面各向异性增大,而CoFe-γ-Fe2O3则是由于表面包覆的是钴铁氧体,γ-Fe2O3与钴铁氧体之间发生耦合作用,使矫顽力增大。  相似文献   

10.
The crystal chemistry of the Kx(Znx/2Ge1-x2)O2 and Kx(GaxGe1-x)O2 systems has been investigated. In each of them a solid solution with a cristobalite-type structure has been obtained with a 0.90?×?1 range. The K+ conductivity increases strongly with vacancy content, while the activation energy remains nearly constant.Influence of various crystal chemical parameters on the conductivity (lattice covalency, size of the bottlenecks, etc...) is discussed.  相似文献   

11.
The effects of calcium and zinc on the room-temperature coercivity of γ-Fe2O3 particles having cobalt ions adsorbed in 3M NaOH solution at 373K have been studied. When the Ca2+ ions are adsorbed on the γ-Fe2O3 prior to Co2+ ions adsorption, the coercivity of Co-modified γ-Fe2O3 significantly increases compared with that of γ-Fe2O3 modified only with Co2+ ions. In the case of Zn2+ ions, the coercivity of Co-modified γ-Fe2O3 is the same as that of γ-Fe2O3 modified only with Co2+ ions. The emission Mössbauer spectrum of57Co2+ adsorbed on the surfaces of γ-Fe2O3 after pretreating with Ca2+ ions consists of a typical sextet of Fe3+ ions with hyperfine magnetic field, whereas those of γ-Fe2O3 modified only with Co2+ ions and with both Zn2+ and Co2+ ions show nonmagnetic components in addition to magnetic one. The effects of Ca2+ and Zn2+ ions on the adsorption of cobalt on the surface of γ-Fe2O3 are discussed from the viewpoint of site preference energy of cations in ferrite and distribution ratio of each cation.  相似文献   

12.
Cobalt-substituted ferrite nanoparticles were synthesized with a narrow size distribution using reverse micelles formed in the system water/AOT/isooctane. Fe:Co ratios of 3:1, 4:1, and 5:1 were used in the synthesis, obtaining cobalt-substituted ferrites (CoxFe3−xO4) and some indication of γ-Fe3O4 when 4:1 and 5:1 Fe:Co ratios were used. Inductively coupled plasma mass spectroscopy (ICP-MS) verified the presence of cobalt in all samples. Fourier transform infrared (FTIR) showed bands at ∼560 and ∼400 cm−1, characteristic of the metal–oxygen bond in ferrites. Transmission electron microscopy showed that the number median diameter of the particles was ∼3 nm with a geometric deviation of ∼0.2. X-ray diffraction (XRD) confirmed the inverse spinel structure typical of ferrites with a lattice parameter of a=8.388 Å for Co0.61Fe0.39O4, which is near that of CoFe2O4 (a=8.394 Å). Magnetic properties were determined using a superconducting quantum interference device (SQUID). Coercivities higher than 8 kOe were observed at 5 K, whereas at 300 K the particles showed superparamagnetic behavior. The anisotropy constant was determined based on the Debye model for a magnetic dipole in an oscillating field and an expression relating χ′ and the temperature of the in-phase susceptibility peak. Anisotropy constant values in the order of ∼106 erg/cm3 were determined using the Debye model, whereas anisotropy constants in the order of ∼107 erg/cm3 were calculated assuming Ωτ=1 at the temperature peak of the in-phase component of the susceptibility curve as commonly done in the literature. Our analysis demonstrates that the assumption Ωτ=1 at the temperature peak of χ′ is rigorously incorrect.  相似文献   

13.
The lattice parameters of Ti2O3 and (Ti0.98V0.02)2O3 have been measured as a function of temperature (24–670°C for Ti2O3 and 24–440°C for V-doped Ti2O3) from single crystal X-ray data. The high temperatures were attained by blowing hot argon directly on the crystal mounted on an automatic Philips diffractometer. This experimental set-up gives standard deviations which are at least 10 times better than those of the previous measurements and allows to keep Ti2O3 as such well above the transition. The variations of a, c, ca (hexagonal axes) for pure Ti2O3 are in agreement with the previous results. On the contrary we did not observe any transition in the unit cell volume. The V-doping seems to attenuate the transition which is visible only on the a vs T curve  相似文献   

14.
The emission spectra of Nd3+ ions in KNdxRE1?xP4O12 (RE = Y, La and Pr) and KNdxCr1?xP4O12 crystals were investigated. Under selective excitation into 2G72 + 4G52 multiples at 1.6 K the fluorescence of Nd3+ ions in non-equivalent crystal sites was observed. The excitation spectrum of the 4F32 fluorescence had a complex satellite structure. Time resolved measurements showed the dependence of the fluorescence decay on the excitation wavelength. Selective excitation into the satellite lines at the wings of the main transition led to strongly non-exponential decay. The low temperature results indicated that there is no spectral energy transfer between ions in different types of sites.  相似文献   

15.
The crystal structures of (NH+4)Zr2(PO4)3 and (H3O+)Zr2(PO4)3 have been determined from neutron time-of-flight powder diffraction data obtained at 15 K. Both compounds are rhombohedral, R3c, with cell parameters a=8.7088(1) and c=24.2197(4) Å for the ammonium compound and a=8.7528(2), c=23.6833(11) Å for the hydronium compound. In both cases the ions are completely localized in the type I cavities and hydrogen bonded to lattice oxygens. The measured unit cell parameters are relatively large for this class of compounds but the entrance ways into the cavities are still too small to allow for unrestricted movement of the ions. Thus the low conductivity of the hydronium ion is related to this and other structural features.  相似文献   

16.
The smaller magnetic hyperfine field of γ-Fe2O3 small particles below the superparamagnetic blocking temperature compared to that found in larger crystals is discussed in terms of surface and of intrinsic size effects by using Mössbauer spectroscopy.  相似文献   

17.
Sintering temperature and particle size dependent structural and magnetic properties of lithium ferrite (Li0.5Fe2.5O4) were synthesized and sintered at four different temperatures ranging from 875 to 1475 K in the step of 200 K. The sample sintered at 875 K was also treated for four different sintering times ranging from 4 to 16 h. Samples sintered at 1475 K have the cubic spinel structure with a small amount of α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite). The samples sintered at≤1275 K do not show hematite and maghemite phases and the crystals form the single phase spinel structure with the cation ordering on octahedral sites. Particle size of lithium ferrite is in the range of 13-45 nm, and is depend on the sintering temperature and sintering time. The saturation magnetization increased from 45 to 76 emu/g and coercivity decreases from 151 to 139 Oe with an increase in particle size. Magnetization temperature curve recorded in ZFC and FC modes in an external magnetic field of 100 Oe. Typical blocking effects are observed below about 244 K. The dielectric constant increases with an increase in sintering temperature and particle size.  相似文献   

18.
From measurements on single crystals of Li2Ti3O7, the conductivity is determined to be predominately ionic with an anisotropy of σbσa≈4 and σcσb≈7. This anisotropy is significant but is not sufficient to classify this channel-structured ramsdellite material as a one-dimensional conductor. A conduction path through the ramsdellite crystal structure consistent with the determined anisotropy is presented.  相似文献   

19.
 采用溶胶-凝胶工艺和高温高压实验技术,制备了纳米CoFe2O4/SiO2复合材料。利用X射线衍射仪、扫描电子显微镜和振动样品磁强计,对样品的结构、微观形貌和磁性进行了研究,并对CoFe2O4中阳离子的占位情况进行了讨论。结果表明,随着处理压力的升高,样品的晶粒尺寸增大,晶格常数减小,比饱和磁化强度增大。通过计算结果可以推断,压力的升高导致CoFe2O4中的部分Fe3+从A位移向了B位,而部分Co2+则从B位移向了A位。  相似文献   

20.
The electrical conductivities of Ni-doped and “CO-reduced” Ni-doped SrTiO3 single crystals were measured at temperatures 700–1200°C and Po2's of 10?7–10?1 atm. Plots of log σ vs 1T at constant Po2's were found to be linear, and the activation energies appeared to be 0.92 eV for Ni-doped SrTiO3 and 0.50 eV for “CO-reduced” Ni-doped SrTiO3 single crystals, respectively. Plots of log σ vs log Po2 at constant temperature were found to be linear with an average slope of ?14 for SrTiO3:Ni and of ?16 for “CO-reduced” SrTiO3:Ni single crystals, respectively. The electrical conductivity dependencies on Po2 indicate that a triply ionized titanium interstitial and an oxygen vacancy model are applicable to Nidoped and “CO-reduced” Ni-doped SrTiO3 single crystals, respectively. The small polaron conduction was suggested on “CO-reduced” Ni-doped SrTiO3 single crystal from the temperature dependence of conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号