首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Anti-plane analysis of semi-infinite crack in piezoelectric strip   总被引:1,自引:0,他引:1  
Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.  相似文献   

2.
研究了反平面机械载荷和面内电载荷作用下压电体中考虑表面效应时孔边双裂纹问题的断裂特征。基于Gurtin-Murdoch表面理论模型,通过构造映射函数,利用复势电弹理论获得了应力场和电位移场的闭合解答。给出了裂纹尖端应力强度因子、电位移场强因子和能量释放率的解析解。讨论了开裂孔洞几何参数和施加力电载荷对电弹场强因子和能量释放率的影响。  相似文献   

3.
The concept of weak discontinuity is extended to functionally graded piezoelectric bi-material interface, and fracture analysis for the weak discontinuous interface is performed by the methods of Fourier integral transform and Cauchy singular integral equation. Numerical results of the total energy release rate (TERR) and the mechanical strain energy release rate (MSERR) are obtained to show the effects of non-homogeneity parameters, geometrical parameters and loads. Parametric studies yield three conclusions: (1) To reduce the weak-discontinuity of the interface is beneficial to resisting interfacial fracture. The effect of the weak-discontinuity of the interface on TERR and MSERR still depends on the strip width. The wider the strip, the more sensitive the TERR and MSERR will be to the weak-discontinuity of the interface. (2) To predict the effect of electric load on crack propagation, MSERR is more appropriate than TERR to be used as a fracture parameter. To predict the effect of mechanical load on crack propagation, both of them could be used as fracture parameters, and MSERR is more conservative. (3) Mechanical load and negative electric displacement load would promote crack propagation, but positive electric displacement load would retard it. For the structure applied by combined mechanical and positive electric displacement loads, crack propagation may be impeded by appropriately selecting the strip width and the ratio of non-homogeneity parameters.  相似文献   

4.
IntroductionInrecentyearscrackproblemsinpiezoelectricmaterialhavereceivedmuchattention.Manytheoreticalanalyseshavebeengivenby[1~16].Itshouldbe,however,notedthatalltheaboveanalysesarebasedonaso-calledimpermeablecrackassumphon,i.e.thecrackfacesareassumedtobeimpermeabletoelectricfield,sotheelectricdisplacementvanishesinsidethecrack.Usingthisassumption,onewillobtainthefollowingresultS[2'3'5,6'9'16]=whentheelectricloadsaresolelyaPPliedatinLfinity,theelectricdisplacementissquare-rootsingularatthe…  相似文献   

5.
The problem of two unequal collinear straight cracks weakening a poled transversely isotropic piezoelectric ceramic is addressed under semi-permeable electric boundary conditions on the crack faces. The plate has been subjected to combined in-plane normal(to the faces of the cracks) mechanical and electric loads. Problem is formulated employing Stroh formalism and solved using complex variable technique. The elastic field, electric field and energy release rate are obtained in closed analytic form. A case study is presented for poled PZT-5H cracked plate to study the effect of prescribed mechanical load, electric load, inter-crack distance and crack lengths on crack arrest parameters stress intensity factor (SIF), electric displacement intensity factor (EDIF) and mechanical and total energy release rates (ERR). Moreover a comparative study is done of impermeable and semi-permeable crack face boundary conditions on SIF, EDIF and ERR, and results obtained is presented graphically. It is observed that the effect of dielectric medium in the crack gap cannot be ignored.  相似文献   

6.
Based on the Stroh-type formalism, we present a concise analytic method to solve the problem of complicated defects in piezoelectric materials. Using this method and the technique of conformal mapping, the problem of two non-symmetrical collinear cracks emanating from an elliptical hole in a piezoelectric solid is investigated under remotely uniform in-plane electric loading and anti-plane mechanical loading. The exact solutions of the field intensity factors and the energy release rate are presented in closed-form under the permeable electric boundary condition. With the variation of the geometrical parameters, the present results can be reduced to the well-known results of a mode-III crack in piezoelectric materials. Moreover, new special models used for simulating more practical defects in a piezoelectric solid are obtained, such as two symmetrical edge cracks and single edge crack emanating from an elliptical hole or circular hole, T-shaped crack, cross-shaped crack, and semi-infinite plane with an edge crack. Numerical results are then presented to reveal the effects of geometrical parameters and the applied mechanical loading on the field intensity factors and the energy release rate.  相似文献   

7.
The anti-plane problem of an elliptical inhomogeneity with an interfacial crack in piezoelectric materials is investigated. The system is subjected to arbitrary singularity loads (point charge and anti-plane concentrated force) and remote anti-plane mechanical and in-plane electrical loads. Using the complex variable method, the explicit series form solutions for the complex potentials in the matrix and the inclusion regions are derived. The electroelastic field intensity factors, the corresponding energy release rates and the generalized strain energy density at the cracks tips are then provided. The influence of the aspect ratio of the ellipse, the crack geometry and the electromechanical coupling coefficient on the energy release rate and the strain energy density is discussed and shown in graphs. The results indicate that the energy release rate increases with increment of the aspect ratio of the ellipse and the influence of electromechanical coupling coefficient on the energy release rate is significant. The strain energy density decreases with increment of the aspect radio of the ellipse and it is always positive for the cases discussed. The energy release rate, however, can be negative when both mechanical and fields are applied.  相似文献   

8.
A mode III crack cutting perpendicularly across the interface between two dissimilar semi-infinite magnetoelectroelastic solid is studied under the combined loads of a line force, a line electric charge and a line magnetic charge at an arbitrary location. The impermeable conditions are implied on the crack faces. The technique developed in literature for the elastic bimaterial with a crack cutting interface is exploited to treat the magnetoelectroelastic bimaterial. The Riemann-Hilbert problem can be formulated and solved based on complex variable method. Analytical solutions can be obtained for the entire plane. The intensity factors around crack tips can be defined for the elastic, electric and magnetic fields. It shows that, no matter where the load position is, the electric displacement intensity factors (EDIFs), as well as the magnetic induction intensity factors (MIIFs), are identical in magnitude but opposite in sign for both crack tips, on condition that a line force is solely applied. Alternatively, if only a line electric charge is considered, then the stress intensity factors (SIFs) and the MIIFs exhibit the behavior. Likewise, if only a line magnetic charge is applied, it turns to the SIFs and the EDIFs instead. In addition, the dependence of the intensity factors is graphically shown with respect to the location of a line force. It is found that the SIF for a crack tip tends to be infinite if the applied force is approaching the tip itself, but the EDIF, with the complete opposite trend, tends to be vanishing. Finally, focusing on the more practical case of piezoelectric/piezomagnetic bimaterial, variation of the SIF along with the moduli as well as the piezo constitutive coefficients is explored. These analyses may provide some guidance for material selection by minimizing the SIF. It is also believed that the results obtained in this paper can serve as the Green’s function for the dissimilar magnetoelectroelastic semi-infinite bimaterial with a crack cutting the interface under general magnetoelectromechanical loads.  相似文献   

9.
刘瑜  李群 《应用力学学报》2004,21(2):138-141
解析地研究了含中心裂纹的压电体,它在无穷远处承受机电载荷,并在裂面上满足由Parton和Kudryavtsev以及Hao和Shen提出的绝对电边界条件。在平面应变假设下,给出其二维精确解,并提供了机械应变能释放率和裂尖能量释放率等数值结果。考虑工业应用范围之内常用的远场载荷时,由绝对电边界条件得出的能量释放率表现出明显的非线性特征及载荷相关性,而不是完全与电场无关,这一结论与Xu和Rajapakse在较小载荷下得到的规律不同。  相似文献   

10.
The interaction between piezoelectric screw dislocations and two asymmetrical interfacial cracks emanating from an elliptic hole under combined mechanical and electric load at infinity is dealt with. The closed-form solutions are derived for complex potentials and generalized stress fields. In the limiting cases, some well-known results can be obtained from the present solutions. Moreover, some new exact solutions are shown. The stress intensity factor and the energy release rate at the right tip due to a screw dislocation near the right interfacial crack are also calculated. The results show that the shielding effect of dislocation on crack expanding decreases with the increase in dislocation azimuth angle and the distance between the dislocation and the crack tip, and the repulsion acting on the dislocation from the other half plane demotes crack propagation. The increasing of the length of the other crack promotes crack growth, but the increasing of the minor semi-axis demotes it.  相似文献   

11.
A cracked piezoelectric material strip under combining mechanical and electrical loads is considered. The crack is vertical to the top and bottom edges of the strip. The edges of the strip are parallel to the x-axis and perpendicular to the z-axis. When a piezoelectric ceramic is poled, it exhibits transversely isotropic behavior. Among many possible poled axis orientations, a particular orientation when the poling direction lies parallel to x-axis is examined in this paper. Both impermeable crack and permeable crack assumptions are considered. Numerical results are included for three kinds of fracture mechanics specimens, namely an edge-cracked strip, a double edge-cracked strip, and a center-cracked strip, subjected to uniform tensions and uniform electric displacement loads simultaneously, at the far ends. In addition, an edge-cracked strip under pure bending and uniform electric displacement loads at the far ends is also investigated in this paper.  相似文献   

12.
The electrical nonlinear behavior of an anti-plane shear crack in a functionally graded piezoelectric strip is studied by using the strip saturation model within the framework of linear electroelasticity. The analysis is conducted on the electrically unified crack boundary condition with the introduction of the electric crack condition parameter that can describe all the electric crack boundary condition in accordance with the aspect ratio of an ellipsoidal crack and the permittivity inside the crack, in particular, including traditional permeable and impermeable crack boundary conditions. The resulting mixed boundary value problem is analysed and near tip field is obtained by using the integral transform techniques. Numerical results for the normalized five kinds of energy release rates under the small scale electric saturation condition are presented and compared to show the influences of the electric crack condition parameter with the variation of the ellipsoidal crack parameters, electric loads, functionally graded piezoelectric material gradation, crack length, electromechanical coupling coefficient, and crack location. It reveals that there are considerable differences between the results obtained from the traditional electric crack models and those obtained from the current unified crack model.  相似文献   

13.
The behavior of a penny shaped crack in a three-dimensional piezoelectric ceramic strip under non-axisymmetric in-plane normal mechanical and electrical loads is analyzed based on the continuous electric boundary conditions of the crack surface. The potential theory, Hankel transform and Fourier series are used to obtain the systems of dual integral equations, which are then expressed as Fredholm integral equations. The singular mechanical and electric fields and all mode-I field intensity factors are obtained, and the numerical values of various field intensity factors for PZT-6B piezoelectric ceramic are shown graphically for an uniform load and a pair of concentrated load, respectively.  相似文献   

14.
Generalized 2D problem of piezoelectric media containing collinear cracks   总被引:3,自引:0,他引:3  
The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads. The project supported by the National Natural Science Foundation of China (19772004)  相似文献   

15.
The anti-plane problem of N arc-shaped interfacial cracks between a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix is investigated by means of the complex variable method. Cracks are assumed to be permeable and then explicit expressions are presented, respectively, for the electric field on the crack faces, the complex potentials in media and the intensity factors near the crack-tips. As examples, the corresponding solutions are obtained for a piezoelectric bimaterial system with one or two permeable arc-shaped interfacial cracks, respectively. Additionally, the solutions for the cases of impermeable cracks also are given by treating an impermeable crack as a particular case of a permeable crack. It is shown that for the case of permeable interfacial cracks, the electric field is jumpy ahead of the crack tips, and its intensity factor is always dependent on that of stress. Moreover all the field singularities are dependent not only on the applied mechanical load, but also on the applied electric load. However, for the case of a homogeneous material with permeable cracks, all the singular factors are related only to the applied stresses and material constants.  相似文献   

16.
Summary A finite crack propagating at constant speed in a functionally graded piezoelectric strip (FGPS) bonded to a homogeneous piezoelectric strip is considered. It is assumed that the electroelastic material properties of the FGPS vary exponentially across the thickness of the strip, and that the bimaterial strip is under combined anti-plane mechanical shear and in-plane electrical loads. The analysis is conducted for the electrically unified crack boundary condition, which includes both the traditional permeable and the impermeable ones. By using the Fourier transform, the problem is reduced to the solution of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and the crack sliding displacement are presented to show the influences of the crack propagation speed, electric loads, FGPS gradation, crack length, electromechanical coupling coefficient, properties of the bonded homogeneous piezoelectric strip and crack location.  相似文献   

17.
Closed-form solution for two collinear cracks in a piezoelectric strip   总被引:2,自引:0,他引:2  
Under the permeable electric boundary condition, the problem of two collinear anti-plane shear cracks lying at the mid-plane of a piezoelectric strip is investigated. By using the Fourier transform, the associated problem is reduced to a singular integral equation. Solving the resulting equation analytically, the electro-elastic field intensity factors and energy release rates at the inner and outer crack tips can be determined in explicit form. Numerical results for PZT-5H piezoelectric ceramic are also presented graphically. The results reveal that the effect of electric field on crack growth in piezoelectric materials is dependent on applied elastic displacement.  相似文献   

18.
Based on the complex potential approach, the two-dimensional problems in a piezoelectric material containing an elliptic hole subjected to uniform remote loads are studied. The explicit, closed-form solutions satisfying the exact electric boundary condition on the hole surface are given both inside and outside the hole. When the elliptic hole degenerates into a crack, the field intensity factors are obtained. It is shown that the stress intensity factors are the same as that of isotropic material, while the electric displacement intensity factor depends on both the material properties and the mechanical loads, but not on the electric loads. In other words, the uniform electric loads have no influence on the field singularities. It is also shown that the impermeable crack assumption used previously to simply the electric condition is not valid to crack problems in piezoelectric materials.  相似文献   

19.
PZT-4紧凑拉伸试样的断裂分析   总被引:1,自引:1,他引:0  
李海军  刘峰  王自强 《力学学报》2008,40(5):701-706
基于线性压电材料的复势理论,通过解析分析,导出了一种分析有限压电板裂纹问题的解析数值方法. 首先,计算了含中心裂纹有限板的断裂参数,与Woo和Wang的解析数值法(Int J Fract, 1993, 62: 203$\sim$218)相比较,表明该方法具有很高的精度和很好的计算效率. 随后,采用该方法和有限元法计算了PZT-4紧凑拉伸试样在绝缘裂纹面边界条件下断裂时的断裂参数,发现各断裂参数的临界值分散性很大,不能作为压电材料的单参数断裂准则. 进而,针对试样真实的裂隙形状,采用有限元法计算了裂隙尖端的应力、电位移场,比较了裂隙内介质的介电性能对裂隙尖端场的影响,计算了带微裂纹的真实裂隙模型的断裂参数并进行了理论分析.   相似文献   

20.
This work is concerned with the dynamic response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric time-dependent load. The cracks are assumed to act either as an insulator or as a conductor. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain. A numerical Laplace inversion algorithm is used to determine the dynamic stress and electric displacement factors that depend on time and geometry. A normalized equivalent parameter describing the ratio of the equivalent magnitude of electric load to that of mechanical load is introduced in the numerical computation of the dynamic stress intensity factor (DSIF) which has a similar trend as that for the pure elastic material. The results show that the dynamic electric field will impede or enhance crack propagation in a piezoelectric ceramic material at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the crack length to the ligament between the cracks. The stress and electric displacement intensity factor can be combined by the energy density factor or function to address the fracture of piezoelectric materials under the combined influence of electromechanical loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号