首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Using the complex variable function method and the conformal mapping technique,the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface.Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable.The results can be reduced to the well-known solutio...  相似文献   

2.
Based on the Stroh-type formalism, we present a concise analytic method to solve the problem of complicated defects in piezoelectric materials. Using this method and the technique of conformal mapping, the problem of two non-symmetrical collinear cracks emanating from an elliptical hole in a piezoelectric solid is investigated under remotely uniform in-plane electric loading and anti-plane mechanical loading. The exact solutions of the field intensity factors and the energy release rate are presented in closed-form under the permeable electric boundary condition. With the variation of the geometrical parameters, the present results can be reduced to the well-known results of a mode-III crack in piezoelectric materials. Moreover, new special models used for simulating more practical defects in a piezoelectric solid are obtained, such as two symmetrical edge cracks and single edge crack emanating from an elliptical hole or circular hole, T-shaped crack, cross-shaped crack, and semi-infinite plane with an edge crack. Numerical results are then presented to reveal the effects of geometrical parameters and the applied mechanical loading on the field intensity factors and the energy release rate.  相似文献   

3.
The problem of two unequal collinear straight cracks weakening a poled transversely isotropic piezoelectric ceramic is addressed under semi-permeable electric boundary conditions on the crack faces. The plate has been subjected to combined in-plane normal(to the faces of the cracks) mechanical and electric loads. Problem is formulated employing Stroh formalism and solved using complex variable technique. The elastic field, electric field and energy release rate are obtained in closed analytic form. A case study is presented for poled PZT-5H cracked plate to study the effect of prescribed mechanical load, electric load, inter-crack distance and crack lengths on crack arrest parameters stress intensity factor (SIF), electric displacement intensity factor (EDIF) and mechanical and total energy release rates (ERR). Moreover a comparative study is done of impermeable and semi-permeable crack face boundary conditions on SIF, EDIF and ERR, and results obtained is presented graphically. It is observed that the effect of dielectric medium in the crack gap cannot be ignored.  相似文献   

4.
The concept of weak discontinuity is extended to functionally graded piezoelectric bi-material interface, and fracture analysis for the weak discontinuous interface is performed by the methods of Fourier integral transform and Cauchy singular integral equation. Numerical results of the total energy release rate (TERR) and the mechanical strain energy release rate (MSERR) are obtained to show the effects of non-homogeneity parameters, geometrical parameters and loads. Parametric studies yield three conclusions: (1) To reduce the weak-discontinuity of the interface is beneficial to resisting interfacial fracture. The effect of the weak-discontinuity of the interface on TERR and MSERR still depends on the strip width. The wider the strip, the more sensitive the TERR and MSERR will be to the weak-discontinuity of the interface. (2) To predict the effect of electric load on crack propagation, MSERR is more appropriate than TERR to be used as a fracture parameter. To predict the effect of mechanical load on crack propagation, both of them could be used as fracture parameters, and MSERR is more conservative. (3) Mechanical load and negative electric displacement load would promote crack propagation, but positive electric displacement load would retard it. For the structure applied by combined mechanical and positive electric displacement loads, crack propagation may be impeded by appropriately selecting the strip width and the ratio of non-homogeneity parameters.  相似文献   

5.
研究了反平面机械载荷和面内电载荷作用下压电体中考虑表面效应时孔边双裂纹问题的断裂特征。基于Gurtin-Murdoch表面理论模型,通过构造映射函数,利用复势电弹理论获得了应力场和电位移场的闭合解答。给出了裂纹尖端应力强度因子、电位移场强因子和能量释放率的解析解。讨论了开裂孔洞几何参数和施加力电载荷对电弹场强因子和能量释放率的影响。  相似文献   

6.
刘瑜  李群 《应用力学学报》2004,21(2):138-141
解析地研究了含中心裂纹的压电体,它在无穷远处承受机电载荷,并在裂面上满足由Parton和Kudryavtsev以及Hao和Shen提出的绝对电边界条件。在平面应变假设下,给出其二维精确解,并提供了机械应变能释放率和裂尖能量释放率等数值结果。考虑工业应用范围之内常用的远场载荷时,由绝对电边界条件得出的能量释放率表现出明显的非线性特征及载荷相关性,而不是完全与电场无关,这一结论与Xu和Rajapakse在较小载荷下得到的规律不同。  相似文献   

7.
利用复变函数方法, 通过构造保角映射, 分析了一维六方压电准晶中对称条形体中共线双半无限快速传播裂纹的反平面问题, 给出了在电非渗透型与电渗透型两种情况下动态应力强度因子的解析解. 当速度趋于0时可退化为已有的对应的静力问题的解. 得到的解析解对准晶材料的工程应用中有一定的理论价值.  相似文献   

8.
IntroductionDuetotheintrinsiccouplingcharacteristicsbetweenelectricandelasticbehaviors,thatis,appliedmechanicalloadingproduceselasticdeformation ,aswellaselectricfield ,andconverselyelectricfieldcangiverisetoelasticdeformation ,piezoelectricmaterialshave…  相似文献   

9.
The dynamic fracture problem for a functionally graded piezoelectric material (FGPM) strip containing a crack parallel to the free boundaries is considered in this study. It is assumed that the electroelastic properties of the strip vary continuously along the thickness direction of the strip, and that the strip is under the in-plane mechanical and electric impact. Integral transform techniques and dislocation density functions are employed to reduce the problem to the solutions of a system of singular integral equations. The dynamic stress and electric displacement intensity factors versus time are presented for various values of dimensionless parameters representing the crack size, the crack location, the material nonhomogeneity and the loading combination.  相似文献   

10.
The electroelastic interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity containing a confocal blunt crack under infinite longitudinal shear and in-plane electric field is investigated. Using the sectionally holomorphic function theory, Cauchy singular integral, singularity analysis of complex functions and theory of Rieman boundary problem, the explicit series solution of stress field is obtained when the screw dislocation is located in inhomogeneity. The intervention law of the interaction between blunt crack and screw dislocation in inhomogeneity is discussed. The analytical expressions of generalized stress and strain field of inhomogeneity are calculated, while the image force, field intensity factors of blunt crack are also presented. Moreover, a new matrix expression of the energy release rate and generalized strain energy density (SED) are deduced. With the size variation of blunt crack, the results can be reduced to the case of the interaction between a piezoelectric screw dislocation and a line crack in inhomogeneity. Numerical analysis are then conducted to reveal the effects of the dislocation location, the size of inhomogeneity and blunt crack and the applied load on the image force, energy release rate and strain energy density. The influence of dislocation on energy release rate and strain energy density is also revealed.  相似文献   

11.
IntroductionInrecentyearscrackproblemsinpiezoelectricmaterialhavereceivedmuchattention.Manytheoreticalanalyseshavebeengivenby[1~16].Itshouldbe,however,notedthatalltheaboveanalysesarebasedonaso-calledimpermeablecrackassumphon,i.e.thecrackfacesareassumedtobeimpermeabletoelectricfield,sotheelectricdisplacementvanishesinsidethecrack.Usingthisassumption,onewillobtainthefollowingresultS[2'3'5,6'9'16]=whentheelectricloadsaresolelyaPPliedatinLfinity,theelectricdisplacementissquare-rootsingularatthe…  相似文献   

12.
Summary  The steady-state of a propagation eccentric crack in a piezoelectric ceramic strip bonded between two elastic materials under combined anti-plane mechanical shear and in-plane electrical loadings is considered in this paper. The analysis based on the integral transform approach is conducted on the permeable crack condition. Field intensity factors and energy release rate are obtained in terms of a Fredholm integral equation of the second kind. It is shown for this geometry that the crack propagation speed has influence on the dynamic energy release rate. The initial crack branching angle for a PZT-5H piezoceramic structure is predicted by the maximum energy release rate criterion. Received 23 January 2001; accepted for publication 18 October 2001  相似文献   

13.
The polarization saturation (PS) model [Gao, H., Barnett, D.M., 1996. An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79, R25–R29; Gao, H., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510], and the dielectric breakdown (DB) model [Zhang, T.Y., Zhao, M.H., Cao, C.F., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311–327] explain very well some experimental observations of fracture of piezoelectric ceramics. In this paper, the nonlinear hybrid extended displacement discontinuity-fundamental solution method (NLHEDD-FSM) is presented for numerical analysis of both the PS and DB models of two-dimensional (2D) finite piezoelectric media under impermeable and semi-permeable electric boundary conditions. In this NLHEDD-FSM, the solution is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack and the electric yielding zone. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy certain conditions on the boundary of the domain, on the crack face and the electric yielding zone. The zero electric displacement intensity factor in the PS model or the zero electric field strength intensity factor in the DB model at the outer tips of the electric yielding zone is used as a supplementary condition to determine the size of the electric yielding zone. Iteration approaches are adopted in the NLHEDD-FSM. The electric yielding zone is determined, and the extended intensity factors and the local J-integral are calculated for center cracks in piezoelectric strips. The effects of finite domain size, saturation property and different electric boundary conditions, as well as different models on the electric yielding zone and the local J-integral, are studied.  相似文献   

14.
张炳彩  丁生虎 《力学季刊》2022,43(3):640-650
利用复变函数方法和保角变换技术研究了压电效应下一维六方准晶双材料中圆孔边单裂纹的反平面问题.考虑电不可渗透型边界条件,运用保角变换和Stroh公式得到了弹性体受远场剪切力和面内电载荷作用下裂纹尖端应力强度因子和能量释放率的解析解. 数值算例分析了几何参数、远场受力、电位移载荷对能量释放率的影响.结果表明:裂纹长度、耦合系数和远场剪切力的减小可以抑制裂纹的扩展.不考虑电场时,声子场应力对能量释放率的影响较小.本文的研究结果可作为研究一维六方压电准晶双材料孔边裂纹问题的理论基础,同时为压电准晶及其复合材料的设计、制备、优化和性能评估提供理论依据.  相似文献   

15.
The transient response of a semi-infinite mode-III interfacial crack propagating between piezoelectric (PE) and piezomagnetic (PM) half spaces is investigated in this paper. The integral transform method together with the Wiener–Hopf and Cagniard–de Hoop techniques is used to solve the mixed boundary value problem under consideration. The existence of generalized Maerfeld–Tournois interfacial wave is discussed and the solutions of the coupled fields are derived for four different cases of bulk shear wave velocity. The dynamic intensity factors of stress, electric displacement and magnetic induction as well as energy release rate (ERR) are obtained in explicit forms. The numerical results of the universal functions and dimensionless ERR for several different material combinations are presented and discussed in details. It is found that the Bleustein–Gulyaev (generalized Maerfeld–Tournois) waves dominate the dynamic characteristics of the interfacial crack propagation in PE–PM bi-material.  相似文献   

16.
In existing papers, mode I crack problems of piezoelectric ceramics are generally solved in complex domain because of the complex fundamental solutions of in-plane piezoelectric governing equations. In fact, these problems can alternatively be analyzed in real number field by recasting the solutions in real form instead. The main purpose of the present work is to develop such real fundamental solutions by detailed eigenvalue and eigenvector analyses. As an example of application, the widely studied fracture problem of a piezoelectric strip with a center-situated crack under mode I loading condition is then revisited based on the real fundamental solutions. Mixed boundary value conditions of the crack are transformed into Cauchy singular integral equations, which are then solved numerically to get fracture parameters including the energy release rate and intensity factors. Convergence behaviors of the kernel functions are surveyed. Theoretical derivation and computation are validated by the exact solution in a special case. The effect of a combined geometrical parameter on the crack is also investigated.  相似文献   

17.
A plane problem for a crack moving with a subsonic speed along the interface of two piezoelectric semi-infinite spaces is considered. The crack is assumed to be free from mechanical loading. The limited permeable electric condition with an account of electric traction is adopted at its faces. A uniformly distributed mixed mode mechanical loading and an electric flux are prescribed at infinity. The problem is reduced to the Riemann–Hilbert problem by means of introducing a moving coordinate system and assuming that the electric flux is uniformly distributed along the crack region. An exact solution of this problem is proposed. It permits to find in closed form all necessary electromechanical characteristics at the interface and to formulate the equation for the determination of the electric flux. Analysis of this equation confirms the correctness of the assumption concerning the uniform distribution of the electric flux in the crack region. The values of the electric flux are determined by solving the obtained equation. Thereafter, the stress and electric intensity factors as well as their asymptotic fields at the crack tip are also found. The particular case of a crack moving in a homogeneous piezoelectric material is considered. The values of the electric flux and the fracture parameters are found exactly in a simple form for this case. Also, a numerical analysis is performed for a crack propagating with a subsonic speed between PZT4 and PZT5 materials and for a crack moving in PZT4 material. The electric flux in the crack region, stress and electric intensity factors, crack opening and the energy release rate (ERR) are found as functions of the crack speed, loading and electric permeability of the crack medium. The influence of the electric traction on the crack faces upon the mentioned parameters is demonstrated.  相似文献   

18.
Summary  The dynamic problem of an impermeable crack of constant length 2a propagating along a piezoelectric ceramic strip is considered under the action of uniform anti-plane shear stress and uniform electric field. The integral transform technique is employed to reduce the mixed-boundary-value problem to a singular integral equation. For the case of a crack moving in the mid-plane, explicit analytic expressions for the electroelastic field and the field intensity factors are obtained, while for an eccentric crack moving along a piezoelectric strip, numerical results are determined via the Lobatto–Chebyshev collocation method for solving a resulting singular integral equation. The results reveal that the electric-displacement intensity factor is independent of the crack velocity, while other field intensity factors depend on the crack velocity when referred to the moving coordinate system. If the crack velocity vanishes, the present results reduce to those for a stationary crack in a piezoelectric strip. In contrast to the results for a stationary crack, applied stress gives rise to a singular electric field and applied electric field results in a singular stress for a moving crack in a piezoelectric strip. Received 14 August 2001; accepted for publication 24 September 2002 The author is indebted to the AAM Reviewers for their helpful suggestions for improving this paper. The work was supported by the National Natural Science Foundation of China under Grant 70272043.  相似文献   

19.
The electrical nonlinear behavior of an anti-plane shear crack in a functionally graded piezoelectric strip is studied by using the strip saturation model within the framework of linear electroelasticity. The analysis is conducted on the electrically unified crack boundary condition with the introduction of the electric crack condition parameter that can describe all the electric crack boundary condition in accordance with the aspect ratio of an ellipsoidal crack and the permittivity inside the crack, in particular, including traditional permeable and impermeable crack boundary conditions. The resulting mixed boundary value problem is analysed and near tip field is obtained by using the integral transform techniques. Numerical results for the normalized five kinds of energy release rates under the small scale electric saturation condition are presented and compared to show the influences of the electric crack condition parameter with the variation of the ellipsoidal crack parameters, electric loads, functionally graded piezoelectric material gradation, crack length, electromechanical coupling coefficient, and crack location. It reveals that there are considerable differences between the results obtained from the traditional electric crack models and those obtained from the current unified crack model.  相似文献   

20.
Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate are obtained. The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h → ∞. Biography: LI Xian-fang (1964-)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号