首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
在Shishkin格上分析了高阶SIPG方法求解一维对流扩散型奇异摄动问题的一致收敛性.取k(k≥1)次分片多项式和网格剖分单元数为民时,在能量范数度量下Shishkin网格上可获得■((N~(-1)lnN)~k)的一致误差估计.在数值算例部分对理论分析结果进行了验证.  相似文献   

2.
采用非对称内罚间断有限元方法(以下简称NIPG方法)求解一维对流扩散型奇异摄动问题.理论上证明了采用拉格朗日线性元的NIPG方法在Bakhvalov-Shishkin网格上具有最优阶的一致收敛性,即在能量范数度量下其误差估计为O(N~(-1)),其中N为网格剖分中单元个数.数值算例验证了理论分析的正确性.  相似文献   

3.
本文首先指出了 B_N~(1)(β),β_N~(2)(β)的最小化参数估计,即它们在(?)上的最小值解及最小值依 N~(-1/2)(log logN)~(1/2)的速度收敛到模型的真参数β_0及σ_0~2.文章又证明了最小平方和估计(即最小化 N~(-1)S_N(β))和伪最大似然估计(即(1.2)式 L_N(β,ρ~2)的最大值解)在MA(q)情形,依 N~(-1/2)(log logN)~(1/2)速度收敛到β_0,σ_0~2;在 ARMA(p,q)情形,如果 q≥1,收敛速度是 N~(-1/4),若ε(t)具有正态分布,收敛速度可以达到 N~(-1/2)(logN)~(1/2);至于AR(p)情形,文[1]的结果可以给出收敛速度是 N~(-1/2)(log logN)~(1/2).  相似文献   

4.
本文基于一个有限罚函数,设计了关于二阶锥优化问题的原始-对偶路径跟踪内点算法,由于该罚函数在可行域的边界取有限值,因而它不是常规的罚函数,尽管如此,它良好的解析性质使得我们能分析算法并得到基于大步校正和小步校正方法目前较好的多项式时间复杂性分别为O(N~(1/2)log N log N/ε)和O(N~(1/2)log N/ε),其中N为二阶锥的个数.  相似文献   

5.
关于微分差分方程的边值问题   总被引:9,自引:0,他引:9  
本文考虑含小参数ε>0且自变量具有固定时滞1的微分差分方程边值问题(?)其中L[y(x,ε)]=εy″(x,ε)-a(x,ε)y′(x,ε)-b(x,ε)y(x,ε),R[y(x,ε)]=A(x,ε)y′(x-1,ε)+B(x,ε)y(x-1,ε)+f(x,ε),T 是一正数,10下讨论了边值问题解的存在性、唯一性和区间-1≤x≤T 上当ε→0~+时解的一致有效估计.  相似文献   

6.
本文研究了Gurarii的凸性模与正规结构的联系.利用关于该模的不等式得出了如果存在ε,1≤ε≤2,使得β(ε)>ε-1.则空间X具有一致正规结构.  相似文献   

7.
本文研究半线性时滞微分方程边值问题εx″(t) =f (t,x(t) ,x(t-ε) ,ε) ,t∈ (0 ,1 ) ,x(t) =φ(t,ε) ,t∈ [-ε,0 ],x(1 ) =A(ε) .利用不动点原理及微分不等式理论 ,我们证明了边值问题解的存在性 ,并给出了解的一致有效渐近展开式 .  相似文献   

8.
本文我们证明了:如N为充分大的奇数,则N可表作p_1+p_2+p_3,而p_i均位于小区间(N/3-N~(23/39+ε+,N/3+N~(23/39+ε)中.  相似文献   

9.
贾朝华 《数学学报》1991,34(6):832-850
本文我们证明了:如N为充分大的奇数,则N可表作p_1+p_2+p_3,而p_i均位于小区间(N/3-N~(23/39+ε+,N/3+N~(23/39+ε)中.  相似文献   

10.
李俊峰 《数学研究》2006,39(4):370-374
讨论了具强非线性源的半线性热方程ut=△u m in{-ε1,up}边值问题解的性质,证明了TK(uε)在L2(0,T;W10,2(Ω))中关于ε是一致有界的,且(TK(uε))t在L2(Q)中关于ε是一致有界的,从而存在一子列和一可测函数u(x,t)使得当ε→0时,uε→u a.e.于Q.其中TK(r)=m in{K,m ax(r,-K)},Q=Ω×(0,T).  相似文献   

11.
本文证明了对5≤s≤8,几乎所有的满足某些同余条件的正整数N都可以表示为N=p31+···+p3s,|pi-(N/s)1/3|≤N1/3-θs,其中θ5=7261-2ε,θ6=5159-ε,θ7=11333-ε,θ8=19561-ε.  相似文献   

12.
设{Xn, n ≥1}是独立同分布随机变量序列, Un 是以对称函数(x, y) 为核函数的U -统计量. 记Un =2/n(n-1)∑1≤i h(Xi, Xj), h1(x) =Eh(x, X2). 在一定条件下, 建立了∑n=2(logn)δ-1EUn2I {I U n |≥n 1/2√lognε}及∑n=3(loglognε)δ-1/logn EUn2 I {|U n|≥n1/2√log lognε} 的精确收敛速度.  相似文献   

13.
This article discusses the perturbation of a non-symmetric Dirichlet form,(ε, D(ε)), by a signed smooth measure μ, whereμ=μ1 -μ2 with μ1 and μ2 being smooth measures. It gives a sufficient condition for the perturbed form (εμ, D(εμ)) (for some αo ≥ 0) to be a coercive closed form.  相似文献   

14.
This paper deals with semi-global C k -solvability of complex vector fields of the form ${\mathsf{L}=\partial/\partial t+x^r(a(x)+ib(x))\partial/\partial x,}This paper deals with semi-global C k -solvability of complex vector fields of the form L=?/?t+xr(a(x)+ib(x))?/?x,{\mathsf{L}=\partial/\partial t+x^r(a(x)+ib(x))\partial/\partial x,}, r ≥ 1, defined on We=(-e,e)×S1{\Omega_\epsilon=(-\epsilon,\epsilon)\times S^1}, ${\epsilon >0 }${\epsilon >0 }, where a and b are C real-valued functions in (-e,e){(-\epsilon,\epsilon)}. It is shown that the interplay between the order of vanishing of the functions a and b at x = 0 influences the C k -solvability at Σ = {0} × S 1. When r = 1, it is permitted that the functions a and b of L{\mathsf L}depend on the x and t variables, that is, L=?/?t+x(a(x,t)+ib(x,t))?/?x,{\mathsf{L}=\partial/\partial t+x(a(x,t)+ib(x,t))\partial/\partial x,}where (x, t) ? We{(x, t)\in\Omega_\epsilon}.  相似文献   

15.
In this paper, we propose a second order interior point algorithm for symmetric cone programming using a wide neighborhood of the central path. The convergence is shown for commutative class of search directions. The complexity bound is O(r3/2 loge-1){O(r^{3/2}\,\log\epsilon^{-1})} for the NT methods, and O(r2 loge-1){O(r^{2}\,\log\epsilon^{-1})} for the XS and SX methods, where r is the rank of the associated Euclidean Jordan algebra and ${\epsilon\,{ > }\,0}${\epsilon\,{ > }\,0} is a given tolerance. If the staring point is strictly feasible, then the corresponding bounds can be reduced by a factor of r 3/4. The theory of Euclidean Jordan algebras is a basic tool in our analysis.  相似文献   

16.
The dimension function Dψ of a band-limited wavelet ψ is bounded by n if its Fourier transform is supported in [−(2n+2/3)π,(2n+2/3)π]. For each and for each , 0<<δ=δ(n), we construct a wavelet ψ with supp
such that Dψ>n on a set of positive measure, which proves that [−(2n+2/3)π,(2n+2/3)π] is the largest symmetric interval for estimating the dimension function by n. This construction also provides a family of (uncountably many) wavelet sets each consisting of infinite number of intervals.  相似文献   

17.
For fLp( n), with 1p<∞, >0 and x n we denote by T(f)(x) the set of every best constant approximant to f in the ball B(x). In this paper we extend the operators Tp to the space Lp−1( n)+L( n), where L0 is the set of every measurable functions finite almost everywhere. Moreover we consider the maximal operators associated to the operators Tp and we prove maximal inequalities for them. As a consequence of these inequalities we obtain a generalization of Lebesgue's Differentiation Theorem.  相似文献   

18.
19.
Let Ω i and Ω o be two bounded open subsets of \mathbbRn{{\mathbb{R}}^{n}} containing 0. Let G i be a (nonlinear) map from ?Wi×\mathbbRn{\partial\Omega^{i}\times {\mathbb{R}}^{n}} to \mathbbRn{{\mathbb{R}}^{n}} . Let a o be a map from ∂Ω o to the set Mn(\mathbbR){M_{n}({\mathbb{R}})} of n × n matrices with real entries. Let g be a function from ∂Ω o to \mathbbRn{{\mathbb{R}}^{n}} . Let γ be a positive valued function defined on a right neighborhood of 0 in the real line. Let T be a map from ]1-(2/n),+¥[×Mn(\mathbbR){]1-(2/n),+\infty[\times M_{n}({\mathbb{R}})} to Mn(\mathbbR){M_{n}({\mathbb{R}})} . Then we consider the problem
$\left\{ {ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \right.$\left\{ \begin{array}{ll} {{\rm div}}\, (T(\omega,Du))=0 &\quad {{\rm in}} \;\Omega^{o} \setminus\epsilon{{\rm cl}} \Omega^{i},\\ -T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}({x}/{\epsilon}, \gamma(\epsilon)\epsilon^{-1} ({\rm log} \, \epsilon)^{-\delta_{2,n}} u(x)) & \quad \forall x \in \epsilon\partial\Omega^{i},\\ T(\omega, Du(x)) \nu^{o}(x)=a^{o}(x)u(x)+g(x) & \quad \forall x \in \partial \Omega^{o}, \end{array} \right.  相似文献   

20.
This paper discusses the incompressible non-Newtonian fluid with rapidly oscillating external forces g(x,t)=g(x,t,t/) possessing the average g0(x,t) as →0+, where 0<0<1. Firstly, with assumptions (A1)–(A5) on the functions g(x,t,ξ) and g0(x,t), we prove that the Hausdorff distance between the uniform attractors and in space H, corresponding to the oscillating equations and the averaged equation, respectively, is less than O() as →0+. Then we establish that the Hausdorff distance between the uniform attractors and in space V is also less than O() as →0+. Finally, we show for each [0,0].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号