首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 762 毫秒
1.
ZnTe films have been prepared on Si substrates by metal-organic chemical vapour deposition (MOCVD), and the temperature-dependent photoluminescence (PL) properties were investigated. The near-band-edge (NBE) emission of the ZnTe sample at 83K shows an asymmetry line shape, which can be decomposed into two Gaus-siam lines labelled by FE and BE. Temperature-dependent PL intensity of the NBE peak shows two variation regions, and an expression with two dissociation channels fits well to the experimental data. The results of the temperature-dependent full width at half maximum (FWHM) and peak energy were well understood under the framework of the two-dissociation-channel model. That is, at low temperature, the emission from bound excitons governs the NBE peak, while above 157K, the free exciton emission becomes dominant gradually. A simple model with three energy levels was employed to describe the variation in emission intensity of BE and FE with temperature.  相似文献   

2.
钟红梅  刘茜  孙艳  陆卫 《中国物理 B》2009,18(11):5024-5028
ZnO nanopowder is successfully synthesized by annealing the precursors in oxygen gas using the chemical precipitation method. Structural and optical properties of thus synthesized ZnO nanopowder are characterized by scanning electron microscopy (SEM) and photoluminescence (PL). The morphology of ZnO nanopowders evolves from nanorod to cobble as annealing temperature increases from 500 to 1000~\du, while spiral structures are observed in the samples annealed at 900 and 1000~\du. The PL spectra of ZnO nanopowder consist of largely green and yellow emission bands. The green emission from ZnO nanopowder depends strongly on the annealing temperature with a peak intensity at a temperature lower than 800~℃ while the yellow emission is associated with interstitial oxygen \rm O_\i.  相似文献   

3.
Inx Ga1-x N/GaN multiple quantum well (MQW) samples with strain-layer thickness larger/less than the critical one are investigated by temperature-dependent photoluminescence and transmission electron microscopy, and double crystal x-ray diffraction. For the sample with the strained-layer thickness greater than the critical thickness, we observe a high density of threading dislocations generated at the MQW layers and extended to the cap layer. These dislocations result from relaxation of the strain layer when its thickness is beyond the critical thickness. For the sample with the strained-layer thickness greater than the critical thickness, temperature-dependent photoluminescence measurements give evidence that dislocations generated from the MQW layers due to strain relaxation are main reason of the poor photoluminescence property, and the dominating status change of the main peak with increasing temperature is attributed to the change of the radiative recombination from the areas including dislocations to the ones excluding dislocations.  相似文献   

4.
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro¨dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 1013 A/m2 within a very narrow region(about 5 nm).For a current density of 7 × 1013 A/m2 passing through the 2DEG channel with a 2DEG density of above 1.2 × 1017 m-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.  相似文献   

5.
In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge.The high electric field near the gate for the complete silicon doping structure is effectively decreased,which makes the surface electric field uniform.The high electric field peak near the drain results from the potential difference between the surface and the depletion regions.Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer.The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain.The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.  相似文献   

6.
张金风  王冲  张进城  郝跃 《中国物理》2006,15(5):1060-1066
It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schr\"{o}dinger--Poisson equations, theoretical investigation is carried out about the effects of donor density (0--1\times 1019cm-3 and temperature (50--500K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective \Delta Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective \Delta Ec. The Capacitance--Voltage (C-V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations.  相似文献   

7.
Al x Ga 1-x N/GaN high-electron-mobility transistor (HEMT) structures with Al composition ranging from x = 0.13 to 0.36 are grown on sapphire substrates by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The effects of Al content on crystal quality, surface morphology, optical and electrical characteristics of the AlGaN/GaN heterostructures have been analyzed. Although high Al-content (36%) heterostructure exhibits a distinguished photoluminescence peak related to recombination between the two-dimensional electron gas and photoexcited holes (2DEG-h), its crystal quality and rough surface morphology are poor. 2DEG mobility increases with the Al content up to 26% and then it apparently decreases for high Al-content (36%) AlGaN/GaN heterostructure. The increase of sheet carrier density with the increase of Al content has been observed. A high mobility at room temperature of 2105 cm 2 /V s with a sheet carrier density of n s = 1.10 × 10 13 cm -2 , for a 26% Al-content AlGaN/GaN heterostructure has been obtained, which is approaching state-of-the-art for HEMT grown on SiC. Sheet resistance as low as 274 Ω/□ has also been achieved.  相似文献   

8.
By making use of the quasi-two-dimensional(quasi-2D) model, the current–voltage(I–V) characteristics of In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors(HFETs) with different gate lengths are simulated based on the measured capacitance–voltage(C–V) characteristics and I–V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas(2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V·s for the prepared In0.18Al0.82N/AlN/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain–source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density,the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.  相似文献   

9.
Zn1-xMgxO films have been grown on silicon at various substrate temperatures by pulsed laser deposition.The structural and photoluminescent properties of films as a function of substrate temperature have been studied.The optimized substrate temperature is 650℃.The x-ray diffraction spectra indicate that the films are highly C-axis oriented,and no phase separation is observed.The crystal grain size of the films is about 100nm as examined by atomic force microscopy.The cross-sectional transmission electron microscopy verified the C-axis orientation of the Zn1-xMgxO.Thesr films showed ultraviolet photoluminescence at room temperature.The near-band-edge emission peak of the Zn1-xMgxO film deposited at 600℃ has a blueshift (0.40eV) larger than that of the film deposited at 500℃ (0.33eV).The ratio of the near-band-edge to defect level peak intensity is as large as 159.  相似文献   

10.
程萍  张玉明  张义门  郭辉 《中国物理 B》2010,19(9):97802-097802
With annealing temperature kept at 1573 K, the effects of annealing time on stability of the intrinsic defects in epitaxial unintentionally doped 4H-SiC prepared by low pressure chemical vapour deposition have been studied by electron spin resonance (ESR) and low temperature photoluminescence. This paper reports the results shown that annealing time has an important effect on the intrinsic defects in unintentionally doped 4H-SiC when annealing temperature kept at 1573 K. When the annealing time is less than 30 min, the intensity of ESR and photoluminescence is increasing with annealing time prolonged, and reaches the maximum when annealing time is 30 min. Then the intensity of ESR and photoluminescence is rapidly decreased with the longer annealing time, and much less than that of as-grown 4H-SiC when annealing time is 60 min, which should be related with the interaction among the intrinsic defects during the annealing process.  相似文献   

11.
We report a new method for large-scale production of GaMnN nanobars, by ammoniating Ga2O3 films doped with Mn under flowing ammonia atmosphere at 1000oC. The Mn-doped GaN sword-like nanobars are a single-crystal hexagonal structure, containing Mn up to 5.43 atom%. Thickness is about 100 nm and with a width of 200-400 nm. The nanobars are characterized by x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and photoluminescence. The GaN nanobars show two emission bands with a well-defined PL peak at 388 nm and 409 nm respectively. The large distinct redshift (409 nm) are comparable to pure GaN(370 nm) at room temperature. The red-shift photoluminescence is due to Mn doping. The growth mechanism of crystalline GaN nanobars is discussed briefly.  相似文献   

12.
ZnS:Mn thin films are grown on GaN substrates by pulsed laser deposition.The structure,morphology and optical properties are investigated by x-ray diffraction,scanning electron microscopy and photoluminescence(PL).The obtained ZnS:Mn thin films are grown in preferred orientation along β-ZnS(111) direction corresponding to crystalline structure of cubic phase.The deposition temperature has an obvious effect on the structure,surface morphology and optical properties of ZnS:Mn thin films.PL measurements show that there are two emission bands located at 440 nm and 595 nm when the films are deposited at temperatures from 100℃ to 500℃.The relative integrated intensity of the blue emission and orange-red emission is determined by the deposition conditions.At the proper deposition temperature of 300℃,the color coordinate is closest to(0.33,0.33).The ZnS:Mn films on GaN substrates can exhibit white fight emission.  相似文献   

13.
We investigate the temperature dependence of photoluminescence from single and ensemble InAs/GaAs quantum dots systematically. As temperature increases, the exciton emission peak for single quantum dot shows broadening and redshift. For ensemble quantum dots, however, the exciton emission peak shows narrowing and fast redshift. We use a simple steady-state rate equation model to simulate the experimental data of photoluminescence spectra. It is confirmed that carrier-phonon scattering gives the broadening of the exciton emission peak in single quantum dots while the effects of carrier thermal escape and retrapping play an important role in the narrowing and fast redshift of the exciton emission peak in ensemble quantum dots.  相似文献   

14.
冀东  刘冰  吕燕伍  邹杪  范博龄 《中国物理 B》2012,21(6):67201-067201
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 10^13 A/m^2 within a very narrow region(about 5 nm).For a current density of 7 × 10^13 A/m62 passing through the 2DEG channel with a 2DEG density of above 1.2 × 10^17 m^-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.  相似文献   

15.
Mg-doped GaN nanowires have been synthesized by ammoniating Ga2O3 films doped with Mg under flowing ammonia atmosphere at 850℃. The Mg-doped GaN nanowires are characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL). The results demonstrate that the nanowires are single crystalline with hexagonal wurzite structure. The diameters of the nanowires are 20-30nto and the lengths are 50-100μm. The GaN nanowires show three emission bands with well-defined PL peak at 3.45 eV, 3.26 eV, 2.95 eV, respectively. The large distinct blueshift of the bandgap emission can be attributed to the Burstein-Moss effect. The peak at 3.26 eV represents the transition from the conduction-band edge to the acceptor level AM (acceptor Mg). The growth mechanism of crystalline GaN nanowires is discussed briefly.  相似文献   

16.
段宝兴  杨银堂 《中国物理 B》2012,21(5):57201-057201
In this paper,two-dimensional electron gas(2DEG) regions in AlGaN/GaN high electron mobility transistors(HEMTs) are realized by doping partial silicon into the AlGaN layer for the first time.A new electric field peak is introduced along the interface between the AlGaN and GaN buffer by the electric field modulation effect due to partial silicon positive charge.The high electric field near the gate for the complete silicon doping structure is effectively decreased,which makes the surface electric field uniform.The high electric field peak near the drain results from the potential difference between the surface and the depletion regions.Simulated breakdown curves that are the same as the test results are obtained for the first time by introducing an acceptor-like trap into the N-type GaN buffer.The proposed structure with partial silicon doping is better than the structure with complete silicon doping and conventional structures with the electric field plate near the drain.The breakdown voltage is improved from 296 V for the conventional structure to 400 V for the proposed one resulting from the uniform surface electric field.  相似文献   

17.
宋慧敏  贾敏  金迪  崔巍  吴云 《中国物理 B》2016,25(3):35204-035204
The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been investigated experimentally. As the pressure increases, the shapes of charge–voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa,the electron temperature is estimated to be 4.139 e V, the electron density and the vibrational temperature of plasma are peak4.71×10~(11)cm~(-3) and 1.27 e V, respectively. The ratio of spectral lines I391.4/peak I380.5which describes the electron temperature hardly changes when the pressure varies between 5000–30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spectrum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin–pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.  相似文献   

18.
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.  相似文献   

19.
谭仁兵  秦华  张晓渝  徐文 《中国物理 B》2013,22(11):117306-117306
We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas(2DEG)in AlGaN/GaN high electron mobility transistors(HEMTs).By introducing a drifted Fermi–Dirac distribution,we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation.Then,the nonequilibrium Fermi–Dirac function is obtained by applying the calculated electron drift velocity and electron temperature.Under random phase approximation(RPA),the electric field driven plasmon dispersion is investigated.The calculated results indicate that the plasmon frequency is dominated by both the electric field and the angle between wavevector and electric field.Importantly,the plasmon frequency could be tuned by the applied source–drain bias voltage besides the gate voltage(change of the electron density).  相似文献   

20.
A novel fishing rod-shaped GaN nanorod is successfully fabricated through a new method by using the two-step growth technology. This growth method is applicable to continuous synthesis and is able to produce a large number of single-crystalline GaN nanorods with a relatively high purity and at a low cost. X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy are used to characterize the as- synthesized nanorods. The results show that most of the nanorods consist of a main rod and a top curved thread. It is single-crystal GaN with hexagonal wurtzite structure. The representative photoluminescence spectrum at room temperature exhibits a strong UV light emission band centered at 370.8nm. Furthermore, a possible two-stage growth mechanism of the fishing rod-shaped GaN nanorod is also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号