首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
《Current Applied Physics》2019,19(8):938-945
Although metal nanoparticles (NPs) have been widely reported, Au NPs functionalized reduced graphene oxide (rGO)/GaN nanorods (NRs) for multi-functional applications are rarely discussed. The rGO is a well known transparent electrode and has been considering an alternative electrode to ITO in the current optoelectronic community. In this work, Au NPs functionalized rGO (Au@rGO)/GaN NRs hybrid structure probed for photodetector and CO gas sensing applications. The hybrid structure was characterized by scanning electron microscopy, transmission electron microscope, current-voltage characteristics, photo conductivity, and gas sensor measurements. The Au@rGO/GaN NRs showed higher photoresponsivity (λ = 382 nm, 516 nm) compared to rGO/GaN NRs at room temperature. The rising and falling times of Au@rGO/GaN NRs are faster than that of rGO/GaN NRs. The hybrid structure Au@rGO/GaN NRs exhibited high CO gas response compared to rGO/GaN NRs at room temperature (∼38% to the 20 ppm). Au NPs played an important role in terms of electronic and chemical changes in the hybrid structure for improving both photodetectors the CO gas response. Such a multi-functional hybrid device is an interest of various room temperature applications.  相似文献   

2.
A nanostructured composite film comprising reduced graphene oxide (rGO) and nickel oxide (NiO) nanoparticles (NPs) has been prepared and utilized for development of a simple yet efficient sensor for detection of dopamine and epinephrine in a single run. The hybrid material rGO-NiO nanocomposite was synthesized chemically, and the formation of nanocomposite was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, UV-Vis, and Fourier transform infrared (FTIR) spectroscopic techniques. The incorporation of NiO NPs on rGO support was found to provide improved sensing characteristics at electrode interface due to enhanced electron mobility on rGO sheet and high catalytic activity of NiO NPs. Subsequently, the synthesized rGO-NiO nanocomposite was deposited onto indium tin oxide (ITO)-coated glass substrate by simple drop-casting method, and the electrode was characterized through atomic force microscopy (AFM) and scanning electron microscopic (SEM) studies. After optimization of experimental conditions electrochemically for its high sensitivity, the fabricated rGO-NiO/ITO electrode was used for simultaneous detection of dopamine and epinephrine by square wave voltammetry (SWV) method. The results showed high sensitivity of 0.545 and 0.638 μA/μM for dopamine and epinephrine respectively in a broad linear range of 0.5–50 μM. Moreover, remarkable detection limits of 0.495 and 0.423 μM were found for dopamine and epinephrine, and the developed sensor exhibited a wide separation of 380 mV between the respective detection peaks of dopamine and epinephrine. Beside this, the proposed sensor was successfully applied in presence of high concentration of interfering agents, ascorbic acid and uric acid, and validated with real serum samples.  相似文献   

3.
忆阻器和能量存储电容器具有相同的三明治结构,然而两个器件需要的操作电压有明显差异,因此在同一个器件中,研究操作电压的影响因素并对操作电压进行调控,实现器件在不同领域的应用是十分必要的一个工作.本文利用反应磁控溅射技术在ITO导电玻璃、Pt/Si基底上生长了多晶ZrO_2和非晶TaO_x薄膜,选用不同金属材料Au, Ag和Al用作上电极构建了多种金属/氧化物介质/金属三明治结构的电容器,研究了器件在不同偏压极性下的击穿强度.结果发现:底电极是ITO的ZrO_2基电容器在负偏压下的击穿电场比Pt电极器件稍大.不管底电极是ITO还是Pt, Ag作为上电极时器件的击穿强度均存在明显的偏压极性依赖性,正偏压下的击穿电场减小了一个数量级;相反,在Al作为上电极的Al/TaO_x/Pt器件中,正向偏压比负向偏压下的击穿电场增加了近2倍.上述器件的不同击穿行为分别可以由氧化物电极和介质界面层间氧的迁移和重排、电化学活性金属电极的溶解迁移和还原以及化学活性金属电极与氧化物界面的氧化还原反应来解释.该实验结果对有不同操作电压要求的器件,如忆阻器和介质储能电容器等在器件设计和操作方面具有指导意义.  相似文献   

4.
《Current Applied Physics》2015,15(11):1397-1401
Capacitive deionization (CDI) is the next generation of water desalination and softening technology by using relatively low capacitive current of electrochemical double layer. Among various carbon-based materials used for making electrode, reduced graphene oxide (rGO) has been intensively studied due to its excellent electrical conductivity and high surface area. Although Hummer method for making graphene oxide (GO) and rGO is a simple process, it remains some impurities in inherent GO and rGO which affect negatively to the CDI performance. In this work, we successfully prepared ultra purified GO and rGO by modifying Hummer method in order to remove entirely excess elements degrading the CDI performance. The electrosorption capacity of ultra purified rGO is considerably better than that of previous rGO, and maximum removal achieves 3.54 mg g−1 at applied voltage of 2.0 V. Thus, this result could be comparable to other researches in CDI process.  相似文献   

5.
We investigated the influence of excimer-laser annealing (ELA) on the electrical, chemical, and structural properties of indium–tin oxide (ITO) films prepared by a solution process. The ITO film was prepared by the sol-gel method and annealed by excimer-laser pulses with an energy density up to 240?mJ/cm2. Hall measurements showed that the ELA substantially enhanced the electrical properties of the ITO films, including their resistivity, carrier density, and mobility, as increasing the laser energy density. In-depth x-ray photoelectron spectroscopy analysis of the chemical states in the film surface showed that the ELA reduced carbon species and promoted both an oxidation and crystallization. These changes were consistent with results of x-ray diffraction and transmission electron microscopy measurements, where expansions in the microcrystal growth were observed for higher laser energy density. We comprehensively understand that the chemical rearrangement and concomitant crystallization are the main factors for achieving the electrical properties during the ELA. These results suggest the potential of the ELA-treated sol-gel films for providing high-quality ITO films at low temperatures toward the flexible device applications.  相似文献   

6.
A simple and high efficient reduced graphene oxide/acetylene black (rGO/ACET) nano-composite electrode was prepared as the substitute of high-cost Pt counter electrode in dye-sensitized solar cells (DSSCs). Surface-modified method called solvent-substituting (SS) was firstly used to avoid agglomeration of rGO sheets. The Brunner-Emmet-Teller (BET)-specific surface area of rGO was increased from 195.823 to 355.210 m2/g after modifying with ethanol. Then ACET particles were introduced between rGO layers to improve the electronic transportation properties. The chemical compositions, microstructures, and pore size distributions of rGO/ACET composites were investigated. Electrochemical impedance spectroscopy (EIS) indicated that rGO/ACET counter electrode had a lower charge transfer resistance (Rct) and its S-shaped current–voltage curves disappeared obviously. The highest power conversion efficiency up to 6.62% was achieved for the DSSCs with rGO/ACET nano-composite counter electrode.  相似文献   

7.
The novel N-CeO2 nanoparticles decorated on reduced graphene oxide (N-CeO2@rGO) composite has been synthesized by sonochemical method. The characterization of as prepared nanocomposite was intensely performed by UV–Vis, FT-IR, EDX, FE-SEM, HR-TEM, XRD, and TGA analysis. The synthesized nanomaterial was further investigated for its selective and sensitive sensing of paracetamol (PM) based on a N-CeO2@rGO modified glassy carbon electrode. A distinct and improved reversible redox peak of PM is obtained at N-CeO2@rGO nanocomposite compared to the electrodes modified with N-CeO2 and rGO. It displays a very good performance with a wide linear range of 0.05–0.600 μM, a very low detection limit of 0.0098 μM (S/N = 3), a high sensitivity of 268 μA µM−1 cm−2 and short response time (<3 s). Also, the fabricated sensor shows a good sensibleness for the detection of PM in various tablet samples.  相似文献   

8.
王雄  才玺坤  原子健  朱夏明  邱东江  吴惠桢 《物理学报》2011,60(3):37305-037305
在ITO玻璃基底上用射频磁控溅射技术生长氧化锌锡(ZnSnO)沟道有源层、用PECVD生长SiO2薄膜作为薄膜晶体管的栅绝缘层研制了薄膜晶体管(TFT), 器件的场效应迁移率最高达到μn=9.1 cm2/(V ·s),阈值电压-2 V,电流开关比为104. 关键词: 氧化锌锡 薄膜晶体管 场效应迁移率  相似文献   

9.
Amino ion implantation was carried out at the energy of 80 keV with fluence of 5 × 1015 ions cm−2 for indium tin oxide film (ITO) coated glass, and the existence of amino group on the ITO surface was verified by X-ray photoelectron spectroscopy analysis and Fourier transform infrared spectra. Scanning electron microscopy images show that multi-wall carbon nanotubes (MWCNTs) directly attached to the amino ion implanted ITO (NH2/ITO) surface homogeneously and stably. The resulting MWCNTs-attached NH2/ITO (MWCNTs/NH2/ITO) substrate can be used as electrode material. Cyclic voltammetry results indicate that the MWCNTs/NH2/ITO electrode shows excellent electrochemical properties and obvious electrocatalytic activity towards uric acid, thus this material is expected to have potential in electrochemical analysis and biosensors.  相似文献   

10.
Noble metal particles have been embedded in semiconductors to improve photocatalysis efficiently, but the high cost made this approach difficult to apply widely in industry. Herein titanium dioxide/reduced graphene oxide (TiO2/rGO) nanowires in a core-shell structure were prepared. The physicochemical properties and photocatalytic performance of the specimen were characterized in comparison with TiO2 and TiO2/Pt nanowires. The rGO layer and Pt nanoparticles increased chemical states of the components, reduced bandgap energy of the nanowires, enhanced visible light absorption, improved conductance and capacitance significantly. The methylene blue as catalyzed by TiO2/Pt and TiO2/rGO nanowires was degraded to 7.9% and 8.4% in an hour, but retained 25.7% by the TiO2 nanowires. The properties and function of TiO2/rGO nanowires were close to those of TiO2/Pt nanowires, while the rGO price was much lower than that of Pt, which was of great significance for the photocatalytic application of TiO2 heterojunction materials in industry.  相似文献   

11.
Fabrication of cuprous and cupric oxide thin films by heat treatment   总被引:1,自引:0,他引:1  
Cuprous oxide (Cu2O) and cupric oxide (CuO) thin films were prepared by thermal oxidation of copper films coated on indium tin oxide (ITO) glass and non-alkaline glass substrates. The formation of Cu2O and CuO was controlled by varying oxidation conditions such as, oxygen partial pressure, heat treatment temperature, and oxidation time. The microstructure, crystal direction, and optical properties of copper oxide films were measured with X-ray diffraction, atomic force microscopy, and optical spectroscopy. The results indicated that the phase-pure Cu2O and CuO films were produced in the oxidation process. Optical transmittance and reflectance spectra of Cu2O and CuO clearly exhibited distinct characteristics related to their phases. The electrical properties indicated that these films formed ohmic contacts with Cu and ITO electrode materials. Multilayers of Cu2O/CuO were fabricated by choosing the oxidation sequence. The experimental results in this paper suggest that the thermal oxidation method can be employed to fabricate device quality Cu2O and CuO films that are up to 200–300 nm thick.  相似文献   

12.
Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO3)2, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm−2, a fill factor of 0.26, and a power conversion efficiency of 0.14%.  相似文献   

13.
Carbon nanomaterials,including the one-dimensional(1-D) carbon nanotube(CNT) and two-dimensional(2-D) graphene,are heralded as ideal candidates for next generation nanoelectronics.An essential component for the development of advanced nanoelectronics devices is processing-compatible oxide.Here,in analogy to the widespread use of silicon dioxide(SiO2) in silicon microelectronic industry,we report the proof-of-principle use of graphite oxide(GO) as a gate dielectrics for CNT field-effect transistor(FET) via a...  相似文献   

14.
轩瑞杰  刘慧宣 《中国物理 B》2012,21(8):88104-088104
A battery drivable low-voltage transparent lightly antimony(Sb)-doped SnO2 nanowire electric-double-layer (EDL) field-effect transistor (FET) is fabricated on an ITO glass substrate at room temperature. An ultralow operation voltage of 1 V is obtained on account of an untralarge specific gate capacitance (- 2.14 μF/cm2) directly bound up with mobile ions-induced EDL (sandwiched between the top and bottom electrodes) effect. The transparent FET shows excellent electric characteristics with a field-effect mobility of 54.43 cm2/V. s, current on/off ration of 2 × 104, and subthreshold gate voltage swing (S = dVgs/d(logIds)) of 140 mV/decade. The threshold voltage Yth (0.1 V) is estimated which indicates that the SnO2 namowire transistor operates in an n-type enhanced mode. Such a low-voltage transparent nanowire transistor gated by a microporous SiO2-based solid electrolyte is very promising for battery-powered portable nanoscale sensors.  相似文献   

15.
We report the use of the spray pyrolysis method to design self‐assembled isotropic ternary architectures made up of reduced graphene oxide (GO), functionalized multiwalled carbon nanotubes, and nickel oxide nanoparticles for cost‐effective high‐performance supercapacitor devices. Electrodes fabricated from this novel ternary system exhibit exceptionally high capacitance (2074 Fg?1) due to the highly conductive network, synergistic link between GO and carbon nanotubes and achieving high surface area monodispersed NiO decorated rGO/CNTs composite employing the liquid crystallinity of GO dispersions. To further assess the practicality of this material for supercapacitor manufacture, we assembled an asymmetric supercapacitor device incorporating activated carbon as the anode. The asymmetric supercapacitor device showed remarkable capacity retention (>96%), high energy density (23 Wh kg?1), and a coulombic efficiency of 99.5%.  相似文献   

16.
The impacts of shallow trench isolation(STI)indium implantation on gate oxide and device characteristics are studied in this work.The stress modulation effect is confirmed in this research work.An enhanced gate oxide oxidation rate is observed due to the enhanced tensile stress,and the thickness gap is around 5%.Wafers with and without STI indium implantation are manufactured using the 150-nm silicon on insulator(SOI)process.The ramped voltage stress and time to breakdown capability of the gate oxide are researched.No early failure is observed for both wafers the first time the voltage is ramped up.However,a time dependent dielectric breakdown(TDDB)test shows more obvious evidence that the gate oxide quality is weakened by the STI indium implantation.Meanwhile,the device characteristics are compared,and the difference between two devices is consistent with the equivalent oxide thickness(EOT)gap.  相似文献   

17.
Graphene is a valuable and useful nanomaterial due to its exceptionally high tensile strength, electrical conductivity and transparency, as well as the ability to tune its materials properties via functionalization. One of the most important features needed to integrate functionalized graphene into products via scalable processing is the effectiveness of graphene dispersion in aqueous and organic solvents. In this study, we aimed to achieve the functionalization of reduced graphene oxide (rGO) by sonication in a one-step process using polyvinyl alcohol (PVA) as a model molecule to be bound to the rGO surface. We investigated the influence of the sonication energy on the efficacy of rGO functionalization. The correlation between the performance of the high-intensity ultrasonic horn and the synthesis of the PVA functionalized rGO was thoroughly investigated by TGA coupled with MS, and IR, Raman, XPS, Laser diffraction, and SEM analysis. The results show that the most soluble PVA-functionalized rGO is achieved at 50% of the ultrasonic horn amplitude. Analysis of cavitation dynamics revealed that in the near vicinity of the horn it is most aggressive at the highest amplitude (60%). This causes rGO flakes to break into smaller domains, which negatively affects the functionalization process. On the other hand, the maximum of the pressure pulsations far away from the horn is reached at 40% amplitude, as the pressure oscillations are attenuated significantly in the 2-phase flow region at higher amplitudes. These observations corelate well with the measured degree of functionalization, where the optimum functionalized rGO dispersion is reached at 50% horn amplitude, and generally imply that cavitation intensity must be carefully adjusted to achieve optimal rGO functionalization.  相似文献   

18.
赵毅  万星拱 《物理学报》2006,55(6):3003-3006
用斜坡电压法(Voltage Ramp, V-ramp)评价了0.18μm双栅极 CMOS工艺栅极氧化膜击穿电量(Charge to Breakdown, Qbd)和击穿电压(Voltage to Breakdown, Vbd). 研究结果表明,低压器件(1.8V)的栅极氧化膜(薄氧)p型衬底MOS电容和N型衬底电容的击穿电量值相差较小,而高压器件(3.3V)栅极氧化膜(厚氧)p衬底MOS电容和n衬底MOS电容的击穿电量值相差较大,击穿电压测试值也发现与击穿电量 关键词: 薄氧 可靠性 击穿电压 击穿电量  相似文献   

19.
A novel concept based on the use of solutions containing already qualified crystalline antimony-doped tin oxide SnO2:Sb (ATO) nanoparticles has been developed. ATO nanoparticles are decorated by reduced graphene oxide (rGO) through a hydrothermal synthesis method. The electrical and optical properties of the graphene oxide films are investigated systematically. The sheet resistance (R ) of the ATO–rGO films decreases with the increase in the rGO content in the precursor solution. The R can be decreased after the ATO–rGO films annealing in the air for 1 h and can be further decreased by depositing Au on the surface of the films. The optimum property of the ATO–rGO film shows that the R is 80 Ω/□ and the transmittance is about 70 %. The ATO–rGO films are used as the anode of the organic solar cells. The anode film impact on the performance of the devices is studied. Finally, the power conversion efficiency (PCE) of the device based on the poly-(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blended is 1.85 %, and the PCE of the device based on the poly-benzo[1,2-b:4,5-b′] dithio-phene thieno[3,4-b] thiophene:PCBM blended is 3.4 %.  相似文献   

20.
The metal-oxide-semiconductor (MOS) field effect transistor (FET) using ‘oxidized μ c-Si/ultrathin oxide’ gate structure was studied. It was found that this structure shows negative differential resistance behavior, which can be explained by the Coulomb blockade effect of trapped carriers and immediate tunneling into and tunneling out with gate bias variation. The requirements for the device with this structure showing negative differential resistance behavior are based on very weak resistive coupling between floating gate and channel. They are the thinness of the tunnel oxide film, the thickness ratio of the upper oxidized film and the tunnel oxide, and the channel threshold voltage. MOSFET with this gate structure is proposed as a new negative differential resistance device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号