首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.  相似文献   

2.
The dewetting process of thin polystyrene (PS) film on flat and stripe-patterned substrates is presented. Different dewetting processes were observed when the thin PS films annealed at above the glass transition temperature on these different kinds of substrates. The final dewetting on the flat substrate led to formation of polygonal liquid droplets, while on the stripe-patterned substrate, the droplets were observed to align at the centers of the stripes. A possible explanation for the dewetting process on the stripe-patterned substrate is proposed.  相似文献   

3.
We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems.  相似文献   

4.
Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent.  相似文献   

5.
Numerous previous studies have established that the addition of a microphase-ordered AB diblock copolymer to a thin homopolymer A (hA) film can slow, if not altogether prevent, film rupture and subsequent film dewetting on a hard substrate such as silica. However, only a few reports have examined comparable phenomena when the hA/AB blend resides on a soft B-selective surface, such as homopolymer B (hB). In this work, the dewetting kinetics of thin films composed of polystyrene (PS) and a symmetric poly(styrene-b-methyl methacrylate) (SM) diblock copolymer on a poly(methyl methacrylate) substrate is investigated by hot-stage light microscopy. Without the SM copolymer, the dewetting rate of the PS layer is constant under isothermal conditions and exhibits Arrhenius behavior with an apparent activation energy of approximately 180 kJ/mol. Addition of the copolymer promotes a crossover from early- to late-stage dewetting kinetics, as evidenced by measurably different dewetting rates. Transmission electron microscopy reveals the morphological characteristics of dewetted PS/SM films as functions of film thickness and SM concentration.  相似文献   

6.
Various characteristics of dewetting of thin polystyrene (PS) films absorbed on highly cross-linked epoxy-coated and silicon oxide covered substrates are studied as a function of PS film thickness (20h(c1) whereas the spinodal dewetting (SD) occurs through the growth of surface undulations for hh(c2) while the SD mechanism is observed for h相似文献   

7.
The dewetting behavior of thin polystyrene (PS) film has been investigated by placing an upper plate with a ca. 140 nm gap from the underlying substrate with the spin-coated thin polymer films. Three different kinds of dewetting behaviors of thin PS film have been observed after annealing according to the relative position of the PS film to the upper plate. Since the upper plate is smaller than the underlying substrate, a part of the polymer film is not covered by the plate. In this region (I), thin PS film dewetting occurs in a conventional manner, as previously reported. While in the region covered by the upper plate (III), the PS film exhibits unusual dewetted patterns. Meanwhile, in the area right under the edge of the plate (II) (i.e., the area between region I and region III), highly ordered arrays of PS droplets are formed. Formation mechanisms of different dewetted patterns are discussed in detail. This study may offer an effective way to improve the understanding of various dewetting behaviors and facilitate the ongoing exploration of utilizing dewetting as a patterning technique.  相似文献   

8.
Morphological evolution in dewetting thin film bilayers of polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), was studied as a function of annealing temperature and annealing time. The results demonstrate unique dewetting morphologies in PS/TPP bilayers at elevated temperatures that are significantly different from those typically observed in dewetting polymer/polymer bilayers. During temperature ramp studies by optical microscopy (OM) in the reflection mode, PS/TPP bilayers form cracks with a weak optical contrast at approximately 130 degrees C. The crack formation is attributed to tensile stresses within the upper TPP layer. The weak optical contrast of the cracks observed in the bilayers for annealing temperatures below approximately 160 degrees C is consistent with the cracking and dewetting of only the upper TPP layer from the underlying PS layer. The optical contrast of the morphological features is significantly enhanced at annealing temperatures of >160 degrees C. This observation suggests dewetting of both the upper TPP and the lower PS layers that results in the exposure of the silicon substrate. Upon annealing the PS/TPP bilayers at 200 degrees C in a temperature jump experiment, the upper TPP layer undergoes instantaneous cracking as observed by OM. These cracks in the upper TPP layer serve as nucleation sites for rapid dewetting and aggregation of the TPP layer, as revealed by OM and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) results indicated that dewetting of the lower PS layer ensued for annealing times >5 min and progressed up to 90 min. For annealing times >90 min, OM, AFM, and XPS results revealed complete dewetting of both the layers with the formation of TPP encapsulated PS droplets.  相似文献   

9.
The dewetting behavior of thin (about 30 nm) polystyrene (PS) films filled with different amount of (C(6)H(5)C(2)H(4)NH(3))(2)PbI(4) (PhE-PbI(4)) on the silicon substrate with a native oxide layer was investigated. For different additive concentrations, PhE-PbI(4) showed different spatial distributions in the PS films, which had a strong influence on the film wettability, dewetting dynamics, and mechanism. With 0.5 wt % additive, PhE-PbI(4) formed a noncontinuous diffusion layer, which caused a continuous hole nucleation in the film. With about 1 wt % additive, a continuous gradient distribution layer of PhE-PbI(4) formed in the film, which inhibited the dewetting. When the concentration is higher (2 wt %), large PhE-PbI(4) aggregates, in addition to the PhE-PbI(4) continuous layer, formed in the film. These large aggregates (larger than radius of gyration of PS) migrated to the interface, resulting in the hole nucleation and eventually the complete dewetting of the film.  相似文献   

10.
姬相玲 《高分子科学》2016,34(4):475-482
In this work, monodisperse giant polymersomes are fabricated by dewetting of water-in-oil-in-water double emulsion droplets which are assembled by amphiphilic block copolymer molecules in a microfluidic device. The dewetting process can be tuned by solvation between solvent and amphiphilic block copolymer to get polymersomes with controllable morphology. Good solvent(chloroform and toluene) hinders dewetting process of double emulsion droplets and gets acornlike polymersomes or patched polymersomes. On the other hand, poor solvent(hexane) accelerates the dewetting process and achieves complete separation of inner water phase from oil phase to form complete bilayer polymersomes. In addition, twin polymersomes with bilayer membrane structure are formed by this facile method. The formation mechanism for different polymersomes is discussed in detail.  相似文献   

11.
The slippage effect of the polymer chains is investigated in the dewetting process of the polymer solution film. The solvent-induced dewetting is used in our experiments to study the dynamics of hole growth in the dewetting process of the polymer solution film. Our results show that in the case of the low molecular weight polystyrene (PS) film, the slippage effect of the polymer chains is not displayed and the radius of the holes is R approximately exp(t/tau); in the case of the higher molecular weight PS film, the slippage effect of the polymer chain is not valid in the case of the thin film and that is valid in the case of the thick film, and the dynamic process of hole growth divides into three stages (R approximately t, and then R approximately t(x) (23相似文献   

12.
通过低能量功能端基的表面富集作用,研究了聚苯乙烯(PS)薄膜在聚甲基丙烯酸甲酯(PMMA)表面上的铺展和润湿动力学.用光学显微镜跟踪了PS薄膜的润湿行为,并对高分子熔体膜中非连续部分尺寸的增大速率进行了测定.分别用XPS和AFM对PS薄膜的表面组成和PS液滴的平衡接触角进行了测定.发现具有低表面能的氟碳端基在薄膜表面富集使PS薄膜的表面张力下降,并使PS液滴在PMMA表面上的平衡接触角减小,从而使高分子熔体膜中非连续部分尺寸的增长速率下降,得到了与液液界面铺展和润湿理论一致的实验结果.  相似文献   

13.
采用光学显微镜及原子力显微镜等实验手段研究了聚苯乙烯(PS)膜在水和丙酮混合溶剂诱导下的去润湿过程.实验发现,在亲水基底上,随着丙酮含量的减少,在整个去润湿过程中孔半径与时间呈e指数关系[R~exp(t/τ)],然后呈线性关系(R~t),最后为R~t0.76,并且孔增长机理从成核增长机理转变为取代机理.在疏水基底上,随...  相似文献   

14.
In this report, we describe a versatile photochemical method for cross-linking polymer films and demonstrate that this method can be used to inhibit thin polymer films from dewetting. A bifunctional photoactive molecule featuring two benzophenone chromophores capable of abstracting hydrogen atoms from various donors, including C-H groups, is mixed into PS films. Upon exposure to UV light, the bis-benzophenone molecule cross-links the chains presumably by hydrogen abstraction followed by radical recombination. Photoinduced cross-linking is characterized by infrared spectroscopy and gel permeation chromatography. Optical and atomic force microscopy images show that photocrosslinked polystyrene (PS) thin films resist dewetting when heated above the glass transition temperature or exposed to solvent vapor. PS films are inhibited from dewetting on both solid and liquid substrates. The effectiveness of the method to inhibit dewetting is studied as a function of the ratio of cross-linker to macromolecule, duration of exposure to UV light, film thickness, the driving force for dewetting, and the thermodynamic nature of the substrate.  相似文献   

15.
We demonstrate that nanoscale aggregates similar to those formed via amphiphilic block copolymer self-assembly at the air-water interface, including strands, networks, and continents, can be generated by the simple spreading of PS homopolymer solutions on water. Two different PS homopolymers of different molecular weight (PS-405k, M(n) = 405?000 g mol(-1) and PS-33k, M(n) = 33?000 g mol(-1)) are spread at the air-water interface at various spreading concentrations ranging from 0.25 to 3.0 mg/mL. Aggregate formation is driven by PS dewetting from water as the spreading solvent evaporates. We propose that a high spreading concentration or a high molecular weight lead to chain entanglements that restrict macromolecular mobility in the solution, enabling the kinetic trapping of nanostructures associated with early and intermediate stages of PS dewetting. Comparison of PS-405k with a mainly hydrophobic PS-b-PEO block copolymer of similar molecular weight (PSEO-392k, M(n) = 392?000 g mol(-1), 2.0 wt % PEO) allows the effect of a relatively short surface active block on aggregate formation to be investigated. We show that whereas the PEO block is not a required component for the formation of strands and other nonglobular aggregates, it does increase the number of these aggregates at a given spreading concentration and decreases the minimum spreading concentration at which these aggregates are observed, along with decreasing the dimensions and polydispersity of specific surface features. The results provide supporting evidence for the role of PS dewetting in the generation of multiple PS-b-PEO aggregate morphologies at the air-water interface, as originally described in earlier paper from our group.  相似文献   

16.
Slippage of Newtonian liquids in the presence of a solid substrate is a newly found phenomenon, the origin of which is still under debate. In this article, we present a new analysis method to extract the slip length. Enhancing the slip of liquids is an important issue for microfluidic devices that demand for high throughput at low pumping power. We study the velocity of short-chained liquid polystyrene (PS) films dewetting from nonwettable solid substrates. We show how the dynamics of dewetting is influenced by slippage, and we compare the results of two types of substrates that give rise to different slip lengths. As substrates, Si wafers that have been coated with octadecyltrichlorosilane (OTS) or dodecyltrichlorosilane (DTS) were used. Our results demonstrate that the dewetting velocity for PS films on DTS is significantly larger than on OTS and that this difference originates from the different slip lengths of the liquid on top of the two surfaces. For PS films of thickness between 130 and 230 nm, we find slip lengths between 400 nm and 6 microm, depending on substrate and temperature.  相似文献   

17.
We have used a liquid dewetting method to investigate the glass transition temperature Tg of high molecular weight linear, long branched 3-arm star, and short branched 8-arm star polystyrene (PS) in the form of ultrathin films. The results of these dewetting experiments are consistent with prior studies of dewetting of linear PS films and show that, independent of molecular architecture, the glass transition temperature Tg reductions with decreasing film thickness, while important below about 20 nm, are weaker than those observed for linear PS supported on a rigid substrate and as well as those observed in freely standing films. The lack of a strong molecular architecture effect on the Tg-reductions is consistent with the Tg reductions for the dewetting from a liquid substrate reflects changes in segmental dynamics upon confinement rather than chain effects. This contrasts with changes, including increases seen in dewetting from a rigid substrate, for different molecular architectures reported in the literature.  相似文献   

18.
A novel temperature‐step experimental method that extends the Bodiguel‐Fretigny liquid dewetting method of investigating polymer thin films is described and results presented from an investigation of thickness effects on the glass transition temperature (Tg) of ultrathin polystyrene (PS) films. Unlike most other methods of thin film investigation, this procedure promises a rapid screening tool to determine the overall profile of Tg versus film thickness for ultrathin polymer films using a limited number of samples. Similar to our prior observations and other literature data, with this new method obvious Tg depression was observed for PS thin films dewetting on both glycerol and an ionic liquid. The results for PS dewetting on the two different liquids are similar indicating only modest effects of the substrate on the Tg‐film thickness relationship. In both instances, the Tg depression is somewhat less than for similar PSs supported on silicon substrates reported in the literature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1343–1349  相似文献   

19.
In order to explore the degree of contact between hydrophilic blocks and the substrate, the dewetting behavior of Langmuir–Blodgett (LB) films of polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) induced by PMMA‐selective acetone vapor were investigated by atomic force microscopy (AFM) for the first time. With the annealing of acetone vapor, the LB films of PS‐b‐PMMA undergo the swelling and coalescing of aggregates, the formation of bicontinuous patterns, the formation of droplets, and the periodic increase and decrease of droplets. The emergence of the bicontinuous patterns indicates that the dewetting occurs via the spinodal dewetting mechanism. The periodic droplet evolution is a novel phenomenon observed for the first time and quite different from the single droplet evolution of spin‐coated films, which is probably due to the degree of contact between PMMA blocks and the substrate in the LB films being larger than that in the latter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 825–830  相似文献   

20.
We use Dip-Pen Nanolithography (DPN) to generate monolayer surface templates for guiding pattern formation in spin-coated polymer blend films. We study template-directed pattern formation in blends of polystyrene/poly(2-vinylpyridine) (PS/P2VP) as well as blends of PS and the semiconducting conjugated polymer poly(3-hexylthiophene) (P3HT). We show that acid-terminated monolayers can be used to template pattern formation in PS/P3HT blends, while hydrophobic monolayers can be used to template pattern formation in PS/P2VP blends. In both blends, the polymer patterns comprise laterally-phase separated regions surrounded by vertically separated bilayers. We hypothesize that the observed patterns are formed by template-induced dewetting of the bottom layer of a polymer bilayer during the spin-coating process. We compare the effects of template feature size and spacing on the resulting polymer patterns with predictions from published models of template-directed dewetting in thin films and find the data in good agreement. For both blends we observe that a minimum feature size is required to nucleate dewetting/phase separation. We find this minimum template diameter to be approximately 180 nm in 50/50 PS/P2VP blends, and approximately 100 nm in 50/50 PS/P3HT blends. For larger template diameters, PS/P2VP blends show evidence for pattern formation beginning at the template boundaries, while PS/P3HT blends rupture randomly across the template features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号