首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
2007年MacPherson和Srolovitz联合推导出一个三维个体晶粒长大的准确速率方程,但并未给出实验或计算机仿真的验证.采用Potts模型Monte Carlo方法对该速率方程进行了大尺度仿真验证.结果表明,仿真数据与MacPherson-Srolovitz速率方程符合很好,从而初步证实了该速率方程,即三维晶粒长大速率是晶粒棱长和晶粒平均宽度的函数. 关键词: 三维晶粒长大 速率方程 Monte Carlo仿真  相似文献   

2.
Yoshida等人提出的惯性流体模型只能解释脉冲激光烧蚀制备纳米硅晶粒平均尺寸随环境气压的变化规律.在此模型基础上,考虑到烧蚀粒子的初始速度分布(Maxwell分布),得到了纳米硅晶粒尺寸分布的解析表达式,数值模拟结果与Yoshida等人在不同环境氦气压下制备样品的晶粒尺寸分布的实验统计数据基本相符.还利用修正后的模型对不同环境气体种类(氦、氖、氩)中制备的纳米Si晶粒尺寸分布进行了模拟,模拟结果与实验数据相符.结论可为实现纳米硅晶粒尺寸的均匀可控提供理论依据. 关键词: 纳米硅晶粒 脉冲激光烧蚀 惯性流体模型 尺寸分布  相似文献   

3.
研究了在铁磁(NiFe)/反铁磁(FeMn)双层膜之间,交换偏置的形成过程和热稳定性,特别是NiFe/FeMn的交换偏置作用与FeMn层晶粒尺寸的关系.和以前作者不同的是,本文方法采用非磁性Ni-Fe-Cr合金作缓冲层材料,改变Cr的含量就可以获得不同晶粒尺寸的反铁磁FeMn层.实验表明,晶粒尺寸较小的FeMn产生较强的铁磁/反铁磁交换偏置场;但是,对于较大晶粒的FeMn层,出现交换偏置作用所要的临界厚度较小.这符合Mauri提出的理论模型.交换偏置场的热稳定性实验表明,具有较大晶粒尺寸的FeMn层给出较 关键词: 交换偏置 热稳定性 反铁磁 晶粒尺寸  相似文献   

4.
王宁  董刚  杨银堂  陈斌  王凤娟  张岩 《物理学报》2012,61(1):16802-016802
结合Marom模型与实验数据, 给出了晶粒尺寸与金属薄膜厚度的关系式. 基于已有的理论模型, 针对厚度为10–50 nm Cu薄膜, 考虑到表面散射与晶界散射以及电阻率晶粒尺寸效应, 提出一种简化电阻率解析模型. 结果表明, 在10–20 nm薄膜厚度范围内, 考虑晶粒尺寸效应后的简化模型与现有实验数据符合得更好. 相对于Lim, Wang与Marom模型, 所提模型的相对标准差分别降低74.24%, 54.85%, 78.29%. 关键词: 表面散射 晶界散射 晶粒尺寸效应 平均自由程  相似文献   

5.
王晓平  赵特秀  季航  董翊  卞波 《物理学报》1993,42(10):1642-1647
提出一种用薄膜电阻率的准静态测量来进行薄膜晶粒生长动力学研究的方法。在超高真空系统中用直流溅射制备Pd膜,然后测量不同温度下Pd膜电阻率与退火时间的关系。利用二流体模型推算出对应晶粒尺寸大小的变化,并和TEM结果进行比较。在此基础上进一步分析了退火温度对薄膜中晶粒尺寸变化所起的作用,拟合出晶粒的生长曲线。实验结果表明晶粒长大是一种热激活生长过程,激活能约为0.53eV。 关键词:  相似文献   

6.
采用脉冲激光烧蚀技术,在室温、低压Ar气条件下通过改变气体压强及靶与衬底间距,对纳米Si晶粒成核的气压阈值进行了研究.根据扫描电子显微镜图像、拉曼散射谱和X射线衍射谱对制备样品的表征结果,确定了在室温、激光能量密度为4 J/cm2、靶与衬底间距为3 cm条件下形成纳米Si晶粒的阈值气压为0.6 Pa.结合流体力学模型和成核分区模型,对纳米晶粒的成核动力学过程进行了分析.通过Monte Carlo数值模拟,表明在气相成核过程中,烧蚀Si原子的温度和过饱和密度共同影响着纳米晶粒的成核. 关键词: 脉冲激光烧蚀 成核 气压阈值 Monte Carlo数值模拟  相似文献   

7.
张杨  宋晓艳  徐文武  张哲旭 《物理学报》2012,61(1):16102-016102
推导出了单相纳米晶合金的晶界过剩体积与晶粒尺寸之间的定量关系, 建立了纳米晶合金的晶界热力学性质随温度和晶粒尺寸发生变化的确定性函数. 针对SmCo7纳米晶合金, 通过纳米晶界热力学函数计算和分析, 研究了单相纳米晶合金的晶粒组织热稳定性. 研究表明, 当纳米晶合金的晶粒尺寸小于对应于体系中晶界自由能最大值的临界晶粒尺寸时, 纳米晶组织处于相对稳定的热力学状态; 当纳米晶粒尺寸达到和超过临界尺寸时, 纳米晶组织将发生热力学失稳, 导致不连续的快速晶粒长大. 利用纳米晶合金热力学理论与元胞自动机算法相耦合的模型对SmCo7纳米晶合金在升温过程中的晶粒长大行为进行了计算机模拟, 模拟结果与纳米晶合金热力学模型的计算预测结果一致, 由此证实了关于纳米晶合金晶粒组织热稳定性的研究结论. 关键词: 纳米晶合金热力学 7纳米晶合金')" href="#">SmCo7纳米晶合金 热稳定性 计算机模拟  相似文献   

8.
王凌  徐之海  冯华君 《物理学报》2005,54(6):2694-2698
建立了针对多分散高浓度介质偏振光后向扩散散射的Monte Carlo仿真模型,导出了多分散 系统的有效自由程分布函数. 给出了半径为50nm与550nm及其三种不同体积浓度比混合的聚 苯乙烯微球作为散射粒子的高浓度介质的仿真结果. 定性地分析了多分散介质偏振光后向扩 散散射的光强空间分布特征与粒子的体积浓度比的关系. 关键词: 后向扩散散射 偏振光 多分散高浓度介质 Monte Carlo仿真  相似文献   

9.
对舰船尾流激光散射机理及探测过程的数值模拟是研究舰船尾流激光探测与制导的重要基础.首先分析了Monte Carlo方法引入到尾流激光雷达数值模拟领域研究的可行性.结合自行研制的尾流激光雷达实际参数,建立了尾流激光探测的Monte Carlo数值仿真模型.通过对仿真结果进行统计,深入剖析了仿真结果方差大及光子利用率低等问题的成因.为解决该问题,基于有偏采样理论和分裂-轮盘赌基本原理提出了接收光学视场内光子强行碰撞方法和以光子自由程总长度为准则的光子分裂方法,并进行了两方法的融合.仿真与实验结果的对比分析表明,提出的模型仿真结果与实验数据符合较好,验证了模型的正确性;提出的接收光学视场内光子强行碰撞方法和光子分裂方法能有效减小方差并提高光子利用率;解决了Monte Carlo方法引入到尾流激光雷达模拟过程中的适用性问题.  相似文献   

10.
多晶体金属疲劳寿命随晶粒尺寸变化的理论研究   总被引:3,自引:1,他引:2       下载免费PDF全文
李眉娟  胡海云  邢修三 《物理学报》2003,52(8):2092-2095
在疲劳断裂非平衡统计理论框架的基础上,根据界面能模型,推导出了多晶体金属的疲劳寿 命随晶粒尺寸、应变振幅的变化公式.还与有关实验结果进行了比较,发现理论与实验较为 相符. 关键词: 疲劳寿命 晶粒尺寸 非平衡统计理论 界面能模型  相似文献   

11.
Wen Feng  Yinbiao Yan 《哲学杂志》2013,93(13):1057-1070
Abstract

In order to study the dependence of the grain boundary character distributions (GBCD) on the grain size, annealing treatment was carried out on 304 austenitic stainless steel with different initial grain sizes. The evolution of the GBCD was analysed by electron backscatter diffraction. The experimental results showed that abnormal grain growth (AGG) occurred when grain size was small. With a smaller initial grain size, the number density of abnormally large grains and the fraction of low-Σ CSL boundaries increased but the size of abnormally large grains decreased and the random boundaries presented a continuous network. With a larger initial grain size, the fraction of low-Σ CSL boundaries also increased as well as the size of abnormally large grains but the number density of abnormally large grains decreased and the connectivity of random boundary network was disrupted by low-Σ CSL boundaries, especially Σ3n (n = 1, 2, 3) boundaries. However, with a very large initial grain size, normal grain growth (NGG) occurred, which had no effect on the fraction of low-Σ CSL boundaries and the connectivity of random boundary network.  相似文献   

12.
In addition to driving forces due to curvature of grain boundaries there are driving forces acting on triple junctions which also contribute to grain growth. Equations are derived for the rate of change, due to the triple junction forces, of the average area or average volume of 2D and 3D grains, respectively, with a fixed number of topological elements (edges in 2D and faces in 3D). The equations derived are compared with the von Neumann-Mullins equation for 2D curvature driven grain growth and to the extension of that equation to 3D grain growth. In triple junction controlled grain growth, the effect ofn orF is qualitatively the same as in curvature driven growth, with a threshold atn or –F between shrinkage and growth. However, the rates are in general not linear onn orF, and there is a size effect which has a repercursion on the overall growth kinetics.  相似文献   

13.
The microstructure and texture evolution during annealing of rolled pure Mg, at temperatures ranging from 150 to 400°C, was characterised in the present study. A grain growth exponent of n?=?13 was observed and the activation energy for grain growth kinetics was found to be 95.6?kJ?mol?1. Further, broadening of the normalised grain size distributions, indicating abnormal grain growth, was also observed at all temperatures of annealing. The sample had a dominant basal texture before annealing. However, after annealing up to a temperature of 300°C, the alleviation of basal texture was observed in the samples. On further annealing at a temperature of 400°C, a strong basal texture was developed in the samples. The mobility of high angle grain boundaries, which is proportional to correlated misorientation distribution, was observed to be responsible for texture strengthening of the material. The grain boundary mobility changes during grain growth led to the growth of either small or large grains. It was further observed that the growth of small grains caused the formation of basal fibre and large grains led to the weakening of basal texture.  相似文献   

14.
《Current Applied Physics》2019,19(12):1414-1420
The graphene grain boundaries (GGBs) of polycrystalline graphene grown by chemical vapor deposition (CVD) typically constitute a major reason of deterioration of the electrical properties of graphene-based devices. To reduce the density of GGB by increasing the grain size, CVD growth conditions with a reduced CH4 flow rate have been widely applied and, recently, electropolishing of copper (Cu) foil substrates to flatten the surface has been undertaken prior to graphene growth. In this study, we show that polycrystalline graphene layer grown on typical Cu foil features two heterogeneous regions with different average grain sizes: small-grain regions (SGRs) and large-grain regions (LGRs). Statistical analysis of the grains of the graphene layers grown under different process conditions showed that SGRs (which form on Cu striations) limit the average grain size, the ability to control the grain size through adjustment of growth conditions, and global grain-size uniformity. Analysis showed that the surface-flattening process significantly improves grain-size uniformity, and monolayer coverage, as well as the average grain size. These results suggest that a process for flattening the surfaces of Cu substrates is critical to controlling the quality and uniformity of CVD-grown graphene layers for practical device applications.  相似文献   

15.
Abstract

Grain refinement can be described by the classical kinetic equation using a negative value of the specific grain boundary Gibbs energy. A respective overview is offered reporting according observations and simulations, particularly linked to grain boundary segregation. Classical grain growth model is used in the treatment of evolution of the distribution function during refinement. The adapted model requires defining nucleation rate of new grains, which significantly influences the kinetics of the system of grains. Moreover, a jump in the distribution function is allowed at a certain value of the grain radius RJ, which separates old grains from newly nucleated ones. Evolution equation for both the critical radius Rc and separation radius RJ (jump position) as well as for the dimension-free distribution (shape) function are derived. Illustrative examples for the evolution of the system parameters under various nucleation rates of newly generated grains are presented.  相似文献   

16.
Superplastic behaviour of microcrystalline materials is now believed to be controlled by cooperative grain boundary sliding (CGBS). An increasing role of grain boundary mediated plasticity with decreasing grain size down to the nanoscale was predicted leading to the prospect of enhanced superplasticity in nanocrystalline materials. Nevertheless, materials with nanosized grains have revealed a significant decrease in plasticity contrary to theoretical prediction. Direct evidence of CGBS in nanocrystalline Ni3Al alloy from SEM surface analysis and in-situ TEM tensile testing was detected, confirming one similarity in the rheology of deformation processes between micro- and nanomaterials. Thus, differences in deformation behaviour of materials at these two length scales are related to the probability of sliding surface formation, sliding distance and related accommodation mechanisms.  相似文献   

17.
The grain size distributions and related mechanisms in nanocomposite films with nanostructures comprising a nanocrystalline (nc) phase surrounded by an amorphous (a) matrix under different amorphous phase amounts (V a) have been analyzed by using a Monte Carlo grain growth model. The results show that with the V a value increasing to a critical value of ~28%, the grain size distribution approaches lognormality, and it becomes off-lognormal when the V a value is larger or smaller than ~28%. The simulated results are in a good agreement with the experiment. It is shown that the homogenous or inhomogeneous grain growth mode, determined by the energy exerted on the grain boundary, originates in lognormal or off-lognormal grain size distributions in nanocomposite films. Also, in a system with lognormal grain size distribution, the amorphous phase just covers all grain boundaries (GBs) and the length obtained by summing the boundary circumference of all nanograins is the longest. It is expected that this microstructure can result in exceptional properties of nanocomposite films.  相似文献   

18.
The growth of abnormally large grains in textured Ni-5at.%W substrates for high-temperature superconductors deteriorates the sharp texture of these materials and thus has to be avoided. Therefore the growth of abnormal grains is investigated and how it is influenced by the grain orientation and the annealing atmosphere. Texture measurements and grain growth simulations show that the grain orientation only matters so far that a high-angle grain boundary exists between an abnormally growing grain and the Cube-orientated matrix grains. The annealing atmosphere has a large influence on abnormal grain growth which is attributed to the differences in oxygen partial pressure.  相似文献   

19.
The pinning effect of different shape second-phase particles on the grain growth in polycrystalline structures is numerical simulated by the phase-field method. Simulation results indicate that the average grain size is highly dependent on the shape and distribution of the second-phase particles, and the shape effect of particles on grain growth restraining is enhanced with increasing numbers of particles. In order to discuss the relation between the constraint grain growth and the second-phase particles, pinning forces induced by different shape particles are theoretically calculated via the Zener pinning theory. The calculated pining forces indicate that the maximum pinning force is highly dependent on the contact mode between grains and particles, and the distance between particles has a significantly influence on the pinning forces. Therefore, controlling the shape and distributions of second-phase particles in polycrystalline metals or ceramics might be an efficient way to achieve materials with specified microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号