首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新型侧基含磷共聚酯的合成、表征及性能   总被引:2,自引:1,他引:1  
以精制对苯二甲酸(TPA)、乙二醇(EG)和含磷反应型阻燃剂9,10-二氢-9-氧杂-10-[2,3-二(2-羟基乙氧基)羰基丙基]-10-磷杂菲-10-氧化物为原料,利用熔融缩聚法合成了含磷量分别为0.35%、0.65%的阻燃聚酯。通过熔融纺丝法将聚酯制成纤维及织物,研究了纤维的染色性能,并通过极限氧指数法和垂直燃烧法研究了织物的阻燃性能。FT-IR和NMR研究结果表明:阻燃共聚酯含磷量为0.35%时,其氧指数(LOI)达31.5%,并无熔滴、烟雾产生,具有优异的阻燃性能和抗熔滴性能。DSC、TG和XPS的研究结果表明:侧基舍磷单元的引入降低了聚酯的Tg和Tm,较低的Tm将有利于材料加工性能的改善;阻燃聚酯侧基上的P-C、P-O键易断裂并挥发至气相中,从而降低了聚酯热稳定性,阻燃聚酯可能以气相阻燃机理为主发挥阻燃作用。此外,含磷共聚酯纤维具有较优异的染色性能。  相似文献   

2.
双酚A与碳酸乙烯酯反应得到改性单体双(羟乙基)双酚A(BHEEB),BHEEB与对苯二甲酸、乙二醇及阻燃剂[(6-氧代-6H-二苯并[c,e][1,2]氧磷杂己环-6-基)甲基]丁二酸(DDP)通过无规共聚合成了一种新型阻燃共聚酯PBPET.用1H-NMR、ICP-AES对共聚酯的结构进行了表征,用热重分析(TGA)、氧指数(LOI)测定、垂直燃烧测试等对共聚酯的热稳定性、阻燃性和熔滴行为进行了研究.结果表明,BHEEB可以提高共聚酯的热稳定性,含5 mol%BHEEB与4.8 mol%DDP的共聚酯P4.8B5PET,其TGA测试中600℃下氮气氛残炭(wt6R00)可达18.0%.燃烧测试表明,P4.8B5PET的LOI值可达37.0,垂直燃烧达V-0级,并且改性单体BHEEB的引入还能有效地改善聚酯燃烧时的熔滴行为.  相似文献   

3.
新型侧基含磷共聚酯的阻燃和热降解动力学   总被引:3,自引:0,他引:3  
利用动态热重分析法(TG)研究了聚酯(PET )及侧基含磷共聚酯(FR-PET)在不同升温速率下的热稳定性及热降解动力学, 并通过极限氧指数法(LOI)考察了FR-PET的阻燃性能; 采用Flynn-Wall-Ozawa方法分析了PET和FR-PET的热降解表观活化能; 利用Coast-Redfern方法通过对不同机理模型的选取, 确定了PET和FR-PET热降解动力学机理及其模型, 得出了主降解阶段的非等温动力学方程及热降解速率曲线图. 研究结果表明, 侧基含磷单元的引入提高了聚酯的阻燃性能, 侧基上的P—C和P—O键易断裂, 从而降低了聚酯的热稳定性. PET和FR-PET的热降解表观活化能(0.1≤α≤0.85)分别为194-227和184-209 kJ/mol; PET和FR-PET热降解反应均属于受减速形α-t曲线控制的反应级数机理, 其机理函数为f(α)=3(1-α)2/3(0.1≤α≤0.85). 侧基含磷单元的引入对PET的主降解阶段的热降解速率并无实质上的影响. 侧基含磷共聚酯的凝聚相阻燃作用有限, 可能以气相阻燃机理为主发挥阻燃作用.  相似文献   

4.
本文用流变仪、X-射线衍射、DSC、电子显微镜等方法研究了涤纶色母粒中着色剂对聚酯熔体流变性能和纤维热性能以及结晶取向的影响。研究结果表明,在工业常用色含量的聚酯中,颜料起着阻流作用,可溶性染料起着增流作用。聚酯的玻璃化温度Tg、结晶温度Tc、熔化温度Tm、晶体取向、着色纤维的物理结构性能没有明显变化。在色含量增加时,聚酯中的颜料碳黑没有影响聚脂Tg、Tm和结晶度,Tc稍有降低。可溶性染料对Tg没有影响,对Tc、Tm、特性粘度、结晶度、晶体长度略有影响;色含量增高,其数值稍有下降。碳黑在聚酯里以球粒状分散,可溶性染料溶于熔化聚酯成为均相物质,但在含量较高时,着色聚酯为海岛状两相结构。  相似文献   

5.
聚对苯二甲酸丙二醇酯作为新型聚酯材料,具有非常优良的性能,但其易燃性很大的限制了它的应用范围。为了提高对苯二甲酸乙二醇酯的阻燃性能,本文以无卤膨胀型EPFR-300A为阻燃改性剂,马来酸酐接枝聚烯烃(POE-g-MAH)弹性体为增韧剂,对聚对苯二甲酸丙二醇酯树脂(PTT)进行阻燃改性。通过热重分析仪(TGA)、示差扫描量热仪(DSC)、扫描电子显微镜(SEM)、力学性能等技术手段研究了阻燃剂和增韧剂对PTT树脂力学、热学和阻燃性能的影响。结果表明,增韧剂POE和POE-g-MAH的添加提高了PTT树脂的综合力学性能。当质量分数相同时,POE-g-MAH对PTT树脂的增韧效果要优于POE,且当POE-g-MAH质量分数为7%时,综合力学性能最佳。当添加相同质量分数增韧剂,EPFR-300A质量分数达到20%时,阻燃PTT材料阻燃性能最佳,极限氧指数(LOI)达到28.0%,垂直燃烧阻燃等级达到UL94 V-0级。EPFR-300A阻燃剂与PTT树脂间相容性良好,可以有效地促进PTT树脂成炭并提高材料的阻燃性能。  相似文献   

6.
本文研究了以聚磷酸铵(APP)为主阻燃剂,次磷酸铝(AHP)和三聚氰胺氰尿酸盐(MCA)为辅阻燃剂的协效阻燃体系对聚丙烯(PP)阻燃性能的影响。 采用垂直燃烧测试、极限氧指数(LOI)测试、热重分析、锥形量热仪测试、扫描电子显微镜分析等技术手段对所制备的阻燃样品进行了阻燃性能分析。 结果表明:单独添加任一质量分数30%阻燃剂,均不能使PP获得良好的阻燃性能;当阻燃剂总质量分数保持在30%,m(APP):m(AHP):m(MCA)=4:1:1时获得理想阻燃效果,此时阻燃PP的LOI为33%,垂直燃烧测试达到V-0级,热释放速率峰值(PHRR)从765.7 kW/m2降为122.7 kW/m2。  相似文献   

7.
通过本体聚合方法合成了一系列侧链含苯酰亚胺结构的聚对苯二甲酸乙二酯(PET)共聚酯.研究发现,苯酰亚胺单元的引入不仅提高了共聚酯的玻璃化转变温度(T_g)和高温成炭性,并且大大降低了共聚酯高温下的热分解速率.随着苯酰亚胺含量的增加,共聚酯表现出更高的氧指数(LOI)值和更好的阻燃抗熔滴效果.锥形量热测试结果表明,苯酰亚胺结构的引入可以有效地降低共聚酯的峰值热释放速率(p-HRR)、峰值烟释放速率(p-RSR)和总烟释放量(TSR).通过对纯PET和共聚酯燃烧测试后残炭的结构和形貌分析,发现苯酰亚胺结构有助于共聚酯形成石墨化程度更高的致密炭层,这些炭层起到隔热隔氧和抑制有机可燃烟气挥发的作用,在不引入传统阻燃剂的情况下,赋予共聚酯很好的本征阻燃性及抑烟性.  相似文献   

8.
利用锥形量热仪(CONE)和热重分析(TGA),并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对核(PSt/OMMT)-壳(PBA)结构纳米复合粒子(CSN)填充聚丙烯(PP)-乙烯-醋酸乙烯酯共聚物(EVA)复合材料及加入无卤复配阻燃剂制备的PP-EVA/CSN/聚磷酸铵(APP)/层状氢氧化镁铝(LDH)复合阻燃材料的阻燃性能及热降解行为进行了研究。结果表明,添加10%(wt)CSN可以提高PP-EVA复合材料的阻燃性能,且PP-EVA复合体系燃烧时的热释放速率、有效燃烧热减少,热稳定性增强。CSN与APP/LDH产生阻燃协同作用,使复合阻燃材料的阻燃性能、热稳定性能进一步提高。  相似文献   

9.
将制备的4种植物基多孔碳,甘蔗渣炭(SBC)、竹叶炭(BLC)、稻壳炭(RHC)及竹茎炭(BSC),以及购置的椰壳炭(CSC)、果壳炭(NSC)、碳纳米管(CNTs)及可膨胀石墨(EG)分别与聚磷酸铵(APP)复合用于阻燃环氧树脂(EP),研究了碳材料比表面积、表面活性及微观形貌对APP阻燃EP燃烧和热解行为的影响.物理吸附仪、X射线光电子能谱仪(XPS)、扫描电镜研究指出,颗粒状竹茎多孔碳(BSC)的比表面积(2063m2/g)及表面活性基团C—O—、C≡O及COO—的比例显著大于其他碳材料;各种碳材料均以微米级尺度分布于阻燃EP基体.氧指数(LOI)、UL 94垂直燃烧及锥形量热仪研究表明,0.8 wt%BSC或CNTs与3.1 wt%APP协同阻燃EP的LOI分别由EP的24.6%提高到27.3%和27.6%,UL 94均为V-1级,峰值热释放速率分别比EP/APP降低了27%和28%.碳材料的协同阻燃效果主要取决于微观形貌;对于颗粒状多孔碳,其比表面积、O/C比及表面活性基团比例越大,协同阻燃效果越好.热失重分析、共聚焦拉曼光谱及XPS研究证实,碳材料提高了EP/APP复合材料的初始分解温度和残炭量;大的比表面及表面活性,以及管状形貌能够提高环氧树脂复合材料高温残炭量、促进残炭类石墨化转变、改善残炭耐高温氧化性能.  相似文献   

10.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、五硫化二磷(P2S5)为原料合成9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS),并将DOPS与聚磷酸铵(APP)组成复合阻燃剂,用于环氧树脂(EP)的阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法对改性后的环氧树脂的阻燃性能和阻燃机理进行了测试和分析.实验结果表明,DOPS/APP阻燃体系对EP具有很好的阻燃性能,且复配阻燃剂的阻燃效果比单一的阻燃剂阻燃效果好;其中,当阻燃剂的总添加量达到30%时即W_(DOPS)=10%、W_(APP)=20%时,阻燃EP复合材料的LOI值可达到29.2%,垂直燃烧等级达到UL-94 V-0级,残炭量可达49.3%.  相似文献   

11.
将氢氧化镁(Mg(OH)2)凝胶沉积到棉纤维上,以提高棉纤维表面粗糙度和阻燃性能,随后将含有Mg(OH)2的棉纤维浸渍到聚二甲基硅氧烷(PDMS)溶液,获得阻燃超疏水棉织物。 并对棉纤维进行了傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、疏水性、热稳定性、阻燃性能和耐久性测试。 结果表明,Mg(OH)2负载到织物上,使得织物表面具有一定的微/纳米结构,形成了粗糙涂层。 当Mg(OH)2浓度为1.0 mol/L时,Mg(OH)2/PDMS改性的织物接触角(CA)可达158°,极限氧指数(LOI)提升至24.5%,导热系数为0.0525 W/(m·K), 具有超疏水和阻燃性能。 整理后织物经过20次洗涤,100次磨擦,极端条件处理后,CA仍大于150°,LOI值高于23%,显示了较好的耐久性。  相似文献   

12.
为进一步提升硅橡胶(SR)的阻燃性能,利用硅烷偶联剂对硅微粉(SF)进行表面改性,以改性后的SF为阻燃剂,制备出SR样品。通过扫描电子显微镜(SEM)对改性前后SF表面形貌进行表征,通过极限氧指数(LOI)、水平垂直测试、锥形量热仪(CCT)、烟密度测试(SDT)等手段研究SR复合材料力学性能、阻燃性能、抑烟性能。研究表明:添加相同质量的SF和改性SF时,含改性SF的SR力学性能明显提升。其中,含21%(wt)改性SF/SR复合材料的力学、阻燃性能综合最佳。与纯SR相比,改性SF/SR复合材料的LOI增加了15%,热释放速率峰值降低86%,火灾增长指数降低了58%,最大烟密度降低43%。  相似文献   

13.
共聚酯PEIT-PEG结构与性能的研究   总被引:3,自引:0,他引:3  
PET与PEG共聚可改善PET的抗静电性,但PEG含量的增加,会使共聚物的结晶温度大幅度地降低,不利于纤维加工,且伴随着结晶的发生,纤维的抗静电性也受到影响。在共聚体系中添加间苯二甲酸(IPA),不仅能破坏大分子链结构的规整性、降低共聚酯的结晶性,而且能提高共聚酯纤雏的抗静电性能。用DSC与TG对共聚酯(PEIT-PEG)的聚集态结构、热性能、结晶性能等进行了表征。  相似文献   

14.
针对高一化学教学中对水玻璃阻燃机理的不到位认识,测量样品的极限氧指数(LOI)和失重百分率,分析所得数据的含义,得出了水玻璃阻燃机理的主要原因和其他原因。  相似文献   

15.
研究比较线型聚酯胺和超支化聚酯胺作为添加剂用于静电纺丝时,对低浓度聚甲基丙烯酸甲酯溶液可纺性的改善效果及其机理.结果表明,只需加入1wt%的添加剂,无论是线型的还是超支化聚酯胺均能够提高低浓度聚甲基丙烯酸甲酯溶液的可纺性,得到无"串珠"结构的均匀纤维,其直径比不加添加剂而在高浓度纺丝时得到的均匀纤维细很多.通过溶液性能的测试,发现提高可纺性的原因均是由于溶液电导率的提高.超支化聚酯胺因其多枝的结构而含有较多的极性端基,致使本身电导率较高,因而对可纺性的改善效果好于线型聚酯胺.  相似文献   

16.
采用有机蒙脱土(OMMT)和碳酸镍(NC)为阻燃协效剂,与膨胀型阻燃剂(IFR)三元体系协同阻燃线性低密度聚乙烯(LLDPE).采用热重分析(TGA)、氧指数(LOI)测试、UL-94燃烧测试和锥形量热测试(CONE)研究了LLDPE阻燃体系的热稳定性和燃烧性能;采用红外光谱分析(FT-IR)、数码相机和扫描电子显微镜(SEM)对燃烧残余物的结构和形貌进行了分析.结果表明:固定mnLLDPE/mIFR=7/3,当moMMT/m(LLDPE+IFR)=0.04时,阻燃体系的LOI为31.5%,通过UL-94 V-0级测试,LLDPE-IFR-OMMT的残炭率为15.09%,最大热释放速率(PHRR)相比于纯LLDPE降低了50%;向LLDPE-IFR-OMMT体系中添加NC,少量的NC就能显著增加体系的阻燃性能,当mNC/m(LLDPE+IFR)=0.02时,阻燃体系的LOI为32.7%,LLDPE-IFR-OMMT-NC的残炭率达到19.04%,PHRR相比于纯LLDPE降低了57%.OMMT和NC的加入能催化LLDPE-IFR成炭,形成致密的炭层,增加炭层的强度,从而提高复合材料的阻燃性能.  相似文献   

17.
为了提高海藻酸钠(SA)纤维的断裂强度和断裂伸长率, 以丙烯酸(AA)为化学交联组分, SA为离子交联组分, 聚乙烯醇(PVA)为微晶交联组分, 采用湿法纺丝和冻融循环方法制备含有PVA微晶交联点和海藻酸钠/聚丙烯酸(SA/PAA)双网络结构的海藻酸钠/聚丙烯酸/聚乙烯醇(SA/PAA/PVA)复合纤维. 通过流变性能、 力学性能、 红外光谱、 X射线衍射仪(XRD)和扫描电子显微镜(SEM)测试研究了交联剂N,N-亚甲基双丙烯酰胺(MBA)含量和PVA微晶交联对SA/PAA/PVA纺丝原液和复合纤维的结构与性能的影响. 结果表明, 当MBA质量分数为0.5%时, 纺丝原液的损耗模量(G″)最小, 可纺性最好, 复合纤维的断裂强度达到2.83 cN/dtex, 断裂伸长率达到9.38%, 比再生SA纤维分别提高了15.98%和38.96%; PVA冷冻之后形成微晶交联点并且PAA和PVA已经复合到体系中; PAA和PVA的加入提高了复合纤维的结晶度; 复合纤维的表面形貌趋于光滑和规整, 纤维断面更加致密.  相似文献   

18.
膨胀型阻燃UPR复合材料的阻燃及抑烟性能   总被引:2,自引:0,他引:2  
将叶蜡石(PYR)与膨胀型阻燃剂[IFR,聚磷酸铵(APP)/季戊四醇(PER)/三聚氰胺(Mel))复配],应用于不饱和聚酯树脂(UPR),得到膨胀型阻燃UPR复合材料。通过氧指数(LOI)、垂直燃烧(UL94)、烟密度等级(SDR)、热分析(DSC-TG)对阻燃复合材料的阻燃、抑烟及热稳定性能进行了研究。结果表明:在该膨胀型复配阻燃体系中,叶蜡石与IFR存在明显的协效作用,在mPYR∶mAPP∶mPER∶mMel=4∶2∶1∶1,复合阻燃剂的含量为40%的情况下,LOI高达36.4,阻燃级别为UL94 V-0级,SDR为62.95,满足国家对B1级电器类热固性塑料的使用要求。  相似文献   

19.
采用表面接枝硅烷偶联剂法将硼酸负载在可膨胀石墨(EG)表面制得了改性EG(MEG), 并考察了MEG在硬质聚氨酯泡沫(RPUF)中的阻燃性能. 利用扫描电子显微镜、 X射线光电子能谱、 傅里叶变换红外光谱、 膨胀试验及热失重分析对MEG进行了形貌、 元素组成及结构性能表征, 通过热失重分析、 极限氧指数(LOI)及锥形量热仪考察了RPUF/MEG的热稳定性及燃烧性能. 结果表明, 硼硅化合物作为硅硼陶瓷前驱体已负载在EG表面; MEG及RPUF/MEG体系膨胀炭层更为致密, 800 ℃时的残余量分别较EG和RPUF/EG提高了8.7%和3.7%; RPUF/MEG体系的LOI较RPUF/EG有所提高, 热释放速率峰值降低了10%, 产烟速率及CO生成速率均显著降低. RPUF/MEG阻燃性能的提高与MEG负载的硅硼陶瓷前驱体促进了阻燃RPUF各组分间的相互作用及增强了炭层的阻隔性有关.  相似文献   

20.
采用原位聚合法制备了蜜胺树脂(MF)和环氧树脂(EP)双层包裹聚磷酸铵(APP),得到一种新型核壳结构的微胶囊阻燃剂(EMFAPP).用傅里叶红外光谱(FTIR)和扫描电镜(SEM)对微胶囊的核壳结构进行了表征;用极限氧指数(LOI)、垂直燃烧等级测试(UL 94)对EMFAPP在EP中的阻燃性能进行了研究.EMFAPP在EP基体中阻燃性能优异,当其添加量大于7%时EP/EMFAPP均通过UL 94 V-0级,LOI值达27.0%以上.与未包裹APP相比,EMFAPP耐水性明显提高;经水处理(75℃,6天)后,EMFAPP/EP仍可保持良好的阻燃性能.采用热重分析对EMFAPP及其阻燃复合物的热降解行为进行了研究,EMFAPP能够促进成炭,EP/EMFAPP(8 wt%)在700℃残炭率达16.2%,但其低温稳定性有所下降.此外,利用热失重-红外联用对EMFAPP/EP的热降解行为进行了研究,探讨相关阻燃机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号