首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
共聚酯PEIT-PEG结晶性能的研究   总被引:3,自引:0,他引:3  
通过偏光显微镜、广角X衍射与FTIR三种测试手段对共聚酯PEIT-PEG的结晶性能进行了系统的研究,重点分析了间苯二甲酸(IPA)、聚乙二醇(PEG)分子量和含量对共聚酯结晶性的影响。研究表明,PEIT与PEG之间发生了共聚反应,IPA的引入使PET结晶性能下降,晶粒尺寸减少,结晶度降低。引入PEG后,当PEG分子量和含量较低时,共聚酯结晶性能提高;当PEG含量较高时,在PEG分子量不变的情况下,随着PEG含量的增加,结晶性能下降;若PEG重量含量相同,PEG分子量越高,结晶性能越好。  相似文献   

2.
新型成纤共聚酯   总被引:5,自引:0,他引:5  
介绍了成纤共聚酯的研究工作主要是对聚对苯二甲酸乙二醇酯的研究、首先阐述了共聚单体的化学结构对共聚酯性能的影响。实验结果指出了经曲有限元 含有间)邻)位苯环结构和含柔性链结构的共聚是具有明显不同的物理例如,后者的玻璃化温度下降比前者大的多,前者的结昌速度减慢,而后乾的结晶速度加快。其次是阐述了共聚酯的物理性能对其纤维性能的影响,例如,玻璃化温度的降低有利于纤维染色性能的提高,含有柔性 的共聚酯玻璃化  相似文献   

3.
合成了不同用量、不同分子量的聚乙二醇醚(PEG)或聚丁二醇醚(PTMC)与聚对苯二甲酸乙二醇酯(PET)/蒙脱土(MMT)的嵌段共聚物。研究了MMT在共聚物中的分散状态及PEG或PTMG对PET/MMT插层聚合物结晶性能的影响。结果表明,MMT在共聚物中以纳米尺寸分散;加入PEG或PTMG增强了聚酯链段的柔顺性,使共聚物熔体降温过程的结晶温度提高,冷结晶温度降低,即插层嵌段共聚物的结晶速率提高;在合成的共聚物中,分子量为2000,用量为DMT的6%的PEG对插层共聚物结晶速率的促进作用最大  相似文献   

4.
通过含有KI的聚乙二醇(PEG)与PET熔融共混制得导电聚合物,其在常温下电阻率可达到105Ω.cm左右,电阻率随温度升高而降低,具有离子导电的特性.通过FTIR、DSC和偏光显微镜研究其形态结构和热性能,结果表明该导电聚合物中PEG和PET主要是物理共混,晶区不相容,非晶区具有部分相容性,熔融降温发生相分离,KI/PEG形成连续的一相.该导电聚合物作为导电母粒与PET切片以不同的配比共混纺丝制备出颜色较浅的导电PET纤维.当纤维中导电母粒的质量分数超过10 wt%时,制得的导电纤维的电阻率为106Ω.cm左右,具有较好的耐水洗性.该导电纤维具有双连续相结构,连续的KI/PEG导电相因形成导电通路使纤维具有导电性能;连续的PET相使纤维基本保持PET纤维的力学性能.  相似文献   

5.
从四个方面综述了近年来聚对苯二甲酸乙二酯(PET)和聚对苯二甲酸丁二酯(PBT)生物改性的研究进展:(1)在聚酯合成中采用生物原料;(2)采用共聚技术制备可生物降解性共聚酯;(3)生物活性物质在聚酯中的引入改性,可提高其生物相容性和抗菌能力,在聚酯用于人造器官时,可使血管纤维原细胞的细胞增殖;(4)生物酶对聚酯进行水解改性,可减轻重量,并改善吸湿性、染色性等性能。  相似文献   

6.
通过本体聚合方法合成了一系列侧链含苯酰亚胺结构的聚对苯二甲酸乙二酯(PET)共聚酯.研究发现,苯酰亚胺单元的引入不仅提高了共聚酯的玻璃化转变温度(T_g)和高温成炭性,并且大大降低了共聚酯高温下的热分解速率.随着苯酰亚胺含量的增加,共聚酯表现出更高的氧指数(LOI)值和更好的阻燃抗熔滴效果.锥形量热测试结果表明,苯酰亚胺结构的引入可以有效地降低共聚酯的峰值热释放速率(p-HRR)、峰值烟释放速率(p-RSR)和总烟释放量(TSR).通过对纯PET和共聚酯燃烧测试后残炭的结构和形貌分析,发现苯酰亚胺结构有助于共聚酯形成石墨化程度更高的致密炭层,这些炭层起到隔热隔氧和抑制有机可燃烟气挥发的作用,在不引入传统阻燃剂的情况下,赋予共聚酯很好的本征阻燃性及抑烟性.  相似文献   

7.
以生物基单体2,5-呋喃二甲酸、乙二醇为原料合成聚2,5-呋喃二甲酸乙二醇酯(PEF)。采用熔融酯交换法以PEF聚酯部分取代聚对苯二甲酸乙二醇酯(PET),制备了系列PET-b-PEF嵌段共聚酯。通过核磁共振仪(NMR)、差示扫描量热仪(DSC)、热失重仪(TGA)、X射线衍射仪(XRD)等技术手段表征了共聚酯的结构和性能。结果表明,该系列共聚酯的玻璃化转变温度(Tg)在75.8~80.3℃之间,且随着PEF链段质量分数的增加,PET-b-PEF嵌段共聚酯的Tg先降低后升高,结晶度和熔融温度逐渐降低。当PEF链段含量高于15%时,共聚酯没有结晶峰。该系列共聚酯具有良好的热稳定性,起始分解温度在392.2~407.9℃之间,与所制备的PET起始分解温度403.3℃接近。且当共聚酯中PEF链段含量低于15%时,起始分解温度均在407℃左右,优于PET的热稳定性。  相似文献   

8.
非晶聚对苯二甲酸乙二酯的制备与表征   总被引:1,自引:0,他引:1  
通过单体酯交换法和聚 2 ,6 萘二甲酸乙二酯 (PEN)与低分子量PET酯交换的方法分别合成了一系列NPA/TPA/EG和IPA/TPA/EG共聚酯 .随着NPA或IPA单元含量的增加 ,等温结晶速度迅速降低 ,共聚物的结晶性降低甚至非晶化 .由NMR分析得知单体酯交换法与聚合物酯交换法得到的共聚酯NPA/TPA/EG序列分布相近 ,链结构都接近完全无规 .由DSC结果分析 ,随共聚单体含量的增加 ,熔点和熔融热降低 ,结晶度也随之降低 .当NPA或IPA含量达到 2 0 %时 ,可以得到非晶的共聚酯 (APET) .本文还对共聚物组成与结晶温度的关系进行了表征  相似文献   

9.
本文研究聚酯(PET)和含3.5-二甲酸苯磺酸钠(SIPM)结构单元的改性共聚酯(PEI)的共混体系。差示扫描量热分析,X射线衍射分析,染色后的透射和扫描电镜照片等均表明该体系是一个热力学不相溶的体系。在加工成形过程中,特别是在结晶过程中,富PEI相中的SIPM结构单元被排斥在晶格之外形成集簇形态,利用这种相分离的结构形态以及改性共聚酯优先水解的机理,PET/PEI共混纤维经碱水解处理后可制得微孔型的高吸水吸湿纤维。本文讨论了相分离结构对该微孔型纤维的微孔尺寸分布,吸湿保水性能以及纤维力学性能的影响。  相似文献   

10.
合成了一系列聚丁二酸/苯基丁二酸丁二醇共聚酯(PBSBS),利用DSC、1H-NMR和X射线等测试手段对共聚物组成、热力学性能、结晶性能、等温结晶行为进行了表征和研究.结果表明,含苯基的共聚单元的引入显著改变了聚丁二酸丁二醇酯(PBS)的热力学性能4,利用Hoffman-Week曲线得到的共聚物平衡熔点随共聚组分含量的增加显著降低,玻璃化转变温度则明显升高,结晶熔点符合无规共聚物的Flory方程.此外,利用Avrami方程对均聚物PBS以及共聚物PBSBS-10分别进行了等温结晶行为研究,结果表明共聚使结晶速率降低,PBS和PBSBS-10的Avrami指数分别介于2.8~3.0和2.7~2.9之间,结晶方式为三维生长异相成核,X射线测试结果表明共聚不影响晶体结构.  相似文献   

11.
Poly (L-lactide)-poly (ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.  相似文献   

12.
Amphiphilic triblock copolymers of poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) (PHB-PEG-PHB) were directly synthesized by the ring-opening copolymerization of β-butyrolactone monomer using PEG as macroinitiator. Their structure, thermal properties and crystallization were investigated by 1H NMR, differential scanning calorimetry (DSC) and X-ray diffraction. It was found that both PHB and PEG blocks were miscible. With the increase in the PHB block length, the triblock copolymers became amorphous because amorphous PHB block remarkably depressed the crystallization of the PEG block. Biodegradable nanoparticles with core-shell structure were prepared in aqueous solution from the amphiphilic triblock copolymers, and characterized by 1H NMR, SEM and fluorescence. The hydrophobic PHB segments formed the central solid-like core, and stabilized by the hydrophilic PEG block. The nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, the PHB-PEG-PHB nanoparticles also showed good drug loading properties, which suggested that they were very suitable as delivery vehicles for hydrophobic drugs.  相似文献   

13.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

14.
Previously, novel poly(ethylene glycol) (PEG) and sulfonated PEG acrylate (PEG-SO3A/OA) copolymers were prepared as coating and/or blending materials for biomedical applications. Surfaces modified with copolymers exhibited increased anti-coagulation properties and decreased plasma adsorption level due to increased hydrophilic properties and reorientation characteristics of PEG/PEG-SO3A chains in water phase. As continuation study, anti-complement effects of PEG-SO3/OA copolymers were investigated in vitro, and compared with those of low-density polyethylene (LDPE) and PEG/OA. C3 activation by PEG-SO3/OA samples was lower than that by PEG/OA samples, which was attributed to decreased surface nucleophile level of samples. PEG-SO3/OA samples increased inhibition of Bb production, resulting in decreased C5 activation. Owing to reduced activations of C3 and C5, PEG-SO3/OA samples markedly decreased SC5b-9 levels in plasma.  相似文献   

15.
Poly(ethylene glycol) (PEG) triblock and diblock amphiphilic block copolymers were synthesized from poly(ethylene glycol) and poly(ethylene glycol) monomethyl ether, respectively. The hydroxyl groups of PEG readily react with 2-(1-octadecenyl) succinic anhydride (OSA) at 140 °C through ring-opening reaction of the succinic anhydride. Both the PEG-OSA diblock and triblock copolymers are produced without use of any solvent or catalyst. The molecular structure of the copolymers was characterized by 1H NMR and FTIR spectroscopy, and the thermal properties by DSC. The behavior of the copolymers in selective and nonselective solvents was studied by 1H NMR spectroscopy in deuterium oxide and d-chloroform. The aggregation of the polymers in water was studied with a particle size analyzer and a transmission electron microscope (TEM) in bright field mode. The results show that the hydrophobic C18 chain with intramolecular succinic anhydride linker can be attached to the hydrophilic PEG chain, an ester bond forming between the blocks. The copolymers exhibit flexible, liquid-like hydrophobic blocks even in water, which is a nonsolvent for OSA. PEG-OSA block copolymers self-organize in water, forming micellar polymer aggregates in nanoscale.  相似文献   

16.
The poly(3-hydroxybutyrate)(PHB)/poly(ethylene glycol)(PEG) grafting copolymer was successfully prepared by PHB and acrylate groups ended PEGM using AIBN as initiator. The crystallization behavior, thermal stability and environmental biodegradability of PHB/PEG grafting copolymers were investigated with differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and Biodegradation test in vitro. In the results, all the grafting copolymers were found to show the X-ray diffraction arising from the PHB crystal lattice, while none of the PEG crystallized peaks could be found even though the graft percent reached 20%. This result indicated that PEG molecules were randomly grafted onto PHB chain. The thermal properties measured by DSC showed that the melting temperature(Tm) and glass transition temperature (Tg) were both shifted to lower temperature with the graft percent increasing, and this broadened the narrow processability window of PHB. According to TGA results, the thermal stability of the grafting copolymers is not changed compared to pure PHB. From the biodegradation test, it could be concluded that degradation occurred gradually from the surface to the inside and that the degradation rate could be adjusted by the PEG grafting ratio. In another words, the biodegradation profiles of PHB/PEG grafting copolymer can be controlled. These properties make PHB/PEG grafting copolymer have promising potential applications especially in agriculture fields.  相似文献   

17.
Novel triblock copolymers with PEG middle blocks of 1–10 kDa and poly(N-isopropylacrylamide-co-t-butylacrylamide) statistical copolymer side arms with DPn?≈?88 and different compositions, were synthesized by SET-LRP. The thermogelation properties of their aqueous solutions depended on both hydrophobic monomer content of the side blocks and molecular weight (MW) of the poly(ethylene glycol) (PEG) middle block, as proven by dynamic rheometry, DSC, and tube inversion method measurements. At constant PEG chain length, increasing TBAM proportions led to a gelation process occurring at progressively lower temperatures, as well as to a lower stability of the forming hydrogels in the case of shorter-PEG-chain block copolymers. By employing longer PEG blocks (MPEG ≥6,000 Da), stable hydrogels with the gelation temperature below 37 °C could be obtained. For a constant composition of the copolyacrylamide blocks, the dependence of the phase transition temperature (Tph) on MPEG displayed a different shape at different polymer solution concentrations, because of the stronger variation of Tph with polymer concentration as MPEG increased. Also, the viscoelastic properties of the hydrogels resulting from 20 wt.% polymer aqueous solutions at 37 °C were stronger affected by the MW of the PEG middle block than by the hydrophobic character of the thermosensitive side blocks.  相似文献   

18.
A method is developed for the synthesis of the graft copolymer polyvinyltrimethylsilane-graft-poly(ethylene glycol) via the interaction of a brominated polymer with the methyl ether of a low-molecular-mass poly(ethylene glycol). Graft copolymer samples containing up to 79 wt % poly(ethylene glycol) are synthesized through this method. The properties of the graft copolymers and blends formed on their basis with a specially synthesized low-molecular-mass PEG derivative with a terminal trimethylsilyl group are investigated. Physical blends are prepared in order to increase the content of ethylene oxide groups while the film-forming properties of the composite materials are preserved. As shown by structural studies, the graft copolymers are amorphous single-phase systems, while the related blends are two-phase disperse systems, in which one phase is enriched in polytrimethylvinylsilane and the other is enriched in PEG. Studies of the gas-transport behavior of the samples reveal that the introduction of PEG, in contrast to the nonselective initial polymer, results in the formation of PVTMS-based materials that are selective for CO2 in mixtures with H2.  相似文献   

19.
Biodegradable multiblock copolymers were synthesized by a polycondensation of poly(ɛ-caprolactone) (PCL) diols of molecular weight (MW)=3,000 and poly(ethylene glycol)s (PEG) of MW=3,000 with 4,4′-(adipoyldioxy)dicinnamic acid (CAC) dichloride as a chain extender in diphenyl ether at 180 °C for 2 h, and were characterized by GPC, 1H-NMR, FTIR, UV, DSC, and WAXS. These photosensitive copolymers were irradiated by a 400-W high-pressure mercury lamp (λ>280 nm) from 5–60 min to form a network structure. The gel contents increased with irradiation time, and attained ca. 90% after 60 min for all copolymers. The degree of swelling in a distilled water at ambient temperature, and the rate of degradation in a phosphate buffer solution (pH 7.2) at 37 °C increased with increasing PEG components. The shape-memory tests were performed by a cyclic thermomechanical experiments for the photocured CAC/PCL/PEG (75/25) films. The film with a gel content of 57% showed the best shape-memory property with strain fixity rate of 100% and strain recovery rate of 88%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号