首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Research on Community Structure in Bus Transport Networks   总被引:1,自引:0,他引:1  
We abstract the bus transport networks (BTNs) to two kinds of complex networks with space L and space P methods respectively. Using improved community detecting algorithm (PKM agglomerative algorithm), we analyze the community property of two kinds of BTNs graphs. The results show that the BTNs graph described with space L method have obvious community property, but the other kind of BTNs graph described with space P method have not. The reason is that the BTNs graph described with space P method have the intense overlapping community property and general community division algorithms can not identify this kind of community structure. To overcome this problem, we propose a novel community structure called N-depth community and present a corresponding community detecting algorithm, which can detect overlapping community. Applying the novel community structure and detecting algorithm to a BTN evolution model described with space P, whose network property agrees well with real BTNs', we get obvious community property.  相似文献   

2.
We investigate a new cluster projective synchronization(CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes.Based on the community structure of the networks,the controllers are designed differently for the nodes in one community,which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities.Some sufficient criteria are derived to ensure the nodes in the same group projectively synchronize and there is also projective synchronization between nodes in different groups.Particularly,the weight configuration matrix is not assumed to be symmetric or irreducible.The numerical simulations are performed to verify the effectiveness of the theoretical results.  相似文献   

3.
Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network.In this paper,we propose an effective and efficient algorithm,called Dominant Label Propagation Algorithm(Abbreviated as DLPA),to detect communities in complex networks.The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously.Our algorithm is very efficient,since its computational complexity is almost linear to the number of edges in the network.Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks.  相似文献   

4.
李克平  高自友 《中国物理》2007,16(8):2304-2309
In the functional properties of complex networks, modules play a central role. In this paper, we propose a new method to detect and describe the modular structures of weighted networks. In order to test the proposed method, as an example, we use our method to analyse the structural properties of the Chinese railway network. Here, the stations are regarded as the nodes and the track sections are regarded as the links. Rigorous analysis of the existing data shows that using the proposed algorithm, the nodes of network can be classified naturally. Moreover, there are several core nodes in each module. Remarkably, we introduce the correlation function $G_{rs}$, and use it to distinguish the different modules in weighted networks.  相似文献   

5.
吕翎  李钢  郭丽  孟乐  邹家蕊  杨明 《中国物理 B》2010,19(8):80507-080507
This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, Rõssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.  相似文献   

6.
陈含爽  侯中怀  张季谦  辛厚文 《中国物理 B》2010,19(5):50205-050205
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability $p$ or update their strategies with probability $1-p$ depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of $p$ via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.  相似文献   

7.
刘永奎  李智  陈小杰  王龙 《中国物理 B》2009,18(7):2623-2628
This paper studies the evolutionary prisoner's dilemma game on a highly clustered community network in which the clustering coefficient and the community size can be tuned. It finds that the clustering coefficient in such a degree-homogeneous network inhibits the emergence of cooperation for the entire range of the payoff parameter. Moreover, it finds that the community size can also have a marked influence on the evolution of cooperation, with a larger community size leading to not only a lower cooperation level but also a smaller threshold of the payoff parameter above which cooperators become extinct.  相似文献   

8.
This paper studies a simple asymmetrically evolved community network with a combination of preferential attachment and random properties. An important issue about community networks is to discover the different utility increments of two nodes, where the utility is introduced to investigate the asymmetrical effect of connecting two nodes. On the other hand, the connection of two nodes in community networks can be classified as two nodes belonging to the same or to different communities. The simulation results show that the model can reproduce a power-law utility distribution P(u)~u, σ = 2 + 1/p, which can be obtained by using mean-field approximation methods. Furthermore, the model exhibits exponential behaviour with respect to small values of a parameter denoting the random effect in our model at the low-utility region and a power-law feature with respect to big values of this parameter at the high-utility region, which is in good agreement with theoretical analysis. This kind of community network can reproduce a unique utility distribution by theoretical and numerical analysis.  相似文献   

9.
Many realistic networks have community structures, namely, a network consists of groups of nodes within which links are dense but among which links are sparse. This paper proposes a growing network model based on local processes, the addition of new nodes intra-community and new links intra- or inter-community. Also, it utilizes the preferential attachment for building connections determined by nodes' strengths, which evolves dynamically during the growth of the system. The resulting network reflects the intrinsic community structure with generalized power-law distributions of nodes' degrees and strengths.  相似文献   

10.
Complex networks have been studied across many fields of science in recent years. In this paper, we give a brief introduction of networks, then follow the original works by Tsonis et al (2004, 2006) starting with data of the surface temperature from 160 Chinese weather observations to investigate the topology of Chinese climate networks. Results show that the Chinese climate network exhibits a characteristic of regular, almost fully connected networks, which means that most nodes in this case have the same number of links, and so-called super nodes with a very large number of links do not exist there. In other words, though former results show that nodes in the extratropical region provide a property of scale-free networks, they still have other different local fine structures inside. We also detect the community of the Chinese climate network by using a Bayesian technique; the effective number of communities of the Chinese climate network is about four in this network. More importantly, this technique approaches results in divisions which have connections with physics and dynamics; the division into communities may highlight the aspects of the dynamics of climate variability.  相似文献   

11.
沈毅  徐焕良 《物理学报》2010,59(9):6022-6028
提出了权重自相似性加权网络社团结构评判函数,并基于该函数提出一种谱分析算法检测社团结构,结果表明算法能将加权网络划分为同一社团内边权值分布均匀,而社团间边权值分布随机的社团结构.通过建立具有社团结构的加权随机网络分析了该算法的准确性,与WEO和WGN算法相比,在评判权重自相似的阈值系数取较小时,该算法具有较高的准确性.对于一个具有n个节点和c个社团的加权网络,社团结构检测的复杂度为O(cn2/2).通过设置评判权重自相似的阈值系数,可检测出能反映节点联系稳定性的层化性社团结构.这与传统意义上只将加权网络划分为社团中边权值较大而社团间边权值较小的标准不同,从另一个角度更好地提取了加权网络的结构信息.  相似文献   

12.
The effect of weight on community structures is investigated in this paper. We use weighted modularity QwQw to evaluate the partitions and weighted extremal optimization algorithm to detect communities. Starting from empirical and idealized weighted networks, the matching between weights and edges are disturbed. Then using similarity function S to measure the difference between community structures, it is found that the redistribution of weights does strongly affect the community structure especially in dense networks. This indicates that the community structure in networks is a suitable property to reflect the role of weight.  相似文献   

13.
The complexity of many community detection algorithms is usually an exponential function with the scale which hard to uncover community structure with high speed. Inspired by the ideas of the famous modularity optimization, in this paper, we proposed a proper weighting scheme utilizing a novel k-strength relationship which naturally represents the coupling distance between two nodes. Community structure detection using a generalized weighted modularity measure is refined based on the weighted k-strength matrix. We apply our algorithm on both the famous benchmark network and the real networks. Theoretical analysis and experiments show that the weighted algorithm can uncover communities fast and accurately and can be easily extended to large-scale real networks.  相似文献   

14.
Detect overlapping and hierarchical community structure in networks   总被引:2,自引:0,他引:2  
Huawei Shen  Xueqi Cheng  Kai Cai 《Physica A》2009,388(8):1706-1712
Clustering and community structure is crucial for many network systems and the related dynamic processes. It has been shown that communities are usually overlapping and hierarchical. However, previous methods investigate these two properties of community structure separately. This paper proposes an algorithm (EAGLE) to detect both the overlapping and hierarchical properties of complex community structure together. This algorithm deals with the set of maximal cliques and adopts an agglomerative framework. The quality function of modularity is extended to evaluate the goodness of a cover. The examples of application to real world networks give excellent results.  相似文献   

15.
Community structure is an important feature in many real-world networks, which can help us understand structure and function in complex networks better. In recent years, there have been many algorithms proposed to detect community structure in complex networks. In this paper, we try to detect potential community beams whose link strengths are greater than surrounding links and propose the minimum coupling distance (MCD) between community beams. Based on MCD, we put forward an optimization heuristic algorithm (EAMCD) for modularity density function to welded these community beams into community frames which are seen as a core part of community. Using the principle of random walk, we regard the remaining nodes into the community frame to form a community. At last, we merge several small community frame fragments using local greedy strategy for the modularity density general function. Real-world and synthetic networks are used to demonstrate the effectiveness of our algorithm in detecting communities in complex networks.  相似文献   

16.
Graph spectra and the detectability of community structure in networks   总被引:2,自引:0,他引:2  
We study networks that display community structure--groups of nodes within which connections are unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for community detection, such as the popular modularity maximization method. The transition separates a regime in which such methods successfully detect the community structure from one in which the structure is present but is not detected. By comparing these results with recent analyses of maximum-likelihood methods, we are able to show that spectral modularity maximization is an optimal detection method in the sense that no other method will succeed in the regime where the modularity method fails.  相似文献   

17.
Different algorithms, which take both links and link weights into account for the community structure of weighted networks, have been reported recently. Based on the measure of similarity among community structures introduced in our previous work, in this paper, accuracy and precision of three algorithms are investigated. Results show that Potts model based algorithm and weighted extremal optimization (WEO) algorithm work well on both dense or sparse weighted networks, while weighted Girvan–Newman (WGN) algorithm works well only for relatively sparse networks.  相似文献   

18.
The investigation of community structure in networks is an important issue in many disciplines, which still remains a challenging task. First, complex networks often show a hierarchical structure with communities embedded within other communities. Moreover, communities in the network may overlap and have noise, e.g., some nodes belonging to multiple communities and some nodes marginally connected with the communities, which are called hub and outlier, respectively. Therefore, a good algorithm is desirable to be able to not only detect hierarchical communities, but also to identify hubs and outliers. In this paper, we propose a parameter-free hierarchical network clustering algorithm DenShrink. By combining the advantages of density-based clustering and modularity optimization methods, our algorithm can reveal the embedded hierarchical community structure efficiently in large-scale weighted undirected networks, and identify hubs and outliers as well. Moreover, it overcomes the resolution limit possessed by other modularity-based methods. Our experiments on the real-world and synthetic datasets show that DenShrink generates more accurate results than the baseline methods.  相似文献   

19.
Community structure and modularity in networks of correlated brain activity   总被引:1,自引:0,他引:1  
Functional connectivity patterns derived from neuroimaging data may be represented as graphs or networks, with individual image voxels or anatomically-defined structures representing the nodes, and a measure of correlation between the responses in each pair of nodes determining the edges. This explicit network representation allows network-analysis approaches to be applied to the characterization of functional connections within the brain. Much recent research in complex networks has focused on methods to identify community structure, i.e. cohesive clusters of strongly interconnected nodes. One class of such algorithms determines a partition of a network into 'sub-networks' based on the optimization of a modularity parameter, thus also providing a measure of the degree of segregation versus integration in the full network. Here, we demonstrate that a community structure algorithm based on the maximization of modularity, applied to a functional connectivity network calculated from the responses to acute fluoxetine challenge in the rat, can identify communities whose distributions correspond to anatomically meaningful structures and include compelling functional subdivisions in the brain. We also discuss the biological interpretation of the modularity parameter in terms of segregation and integration of brain function.  相似文献   

20.
Most networks found in social and biochemical systems have modular structures. An important question prompted by the modularity of these networks is whether nodes can be said to belong to a single group. If they cannot, we would need to consider the role of “overlapping communities.” Despite some efforts in this direction, the problem of detecting overlapping groups remains unsolved because there is neither a formal definition of overlapping community, nor an ensemble of networks with which to test the performance of group detection algorithms when nodes can belong to more than one group. Here, we introduce an ensemble of networks with overlapping groups. We then apply three group identification methods – modularity maximization, k-clique percolation, and modularity-landscape surveying – to these networks. We find that the modularity-landscape surveying method is the only one able to detect heterogeneities in node memberships, and that those heterogeneities are only detectable when the overlap is small. Surprisingly, we find that the k-clique percolation method is unable to detect node membership for the overlapping case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号