首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, cluster projective synchronization between community networks with nonidentical nodes is investigated. Outer synchronization between two identical or nonidentical complex networks has been extensively studied, in which all the nodes synchronized each other in a common manner. However, in real community networks, different communities in networks usually synchronize with each other in a different manner, i.e., achieving cluster projective synchronization. Based on Lyapunov stability theory, sufficient conditions for achieving cluster projective synchronization are derived through designing proper controllers. Numerical simulations are provided to verify the correctness and effectiveness of the derived theoretical results.  相似文献   

2.
Cluster synchronization of complex dynamical networks with fractional-order dynamical nodes is discussed in the Letter. By using the stability theory of fractional-order differential system and linear pinning control, a sufficient condition for the stability of the synchronization behavior in complex networks with fractional order dynamics is derived. Only the nodes in one community which have direct connections to the nodes in other communities are needed to be controlled, resulting in reduced control cost. A numerical example is presented to demonstrate the validity and feasibility of the obtained result. Numerical simulations illustrate that cluster synchronization performance for fractional-order complex dynamical networks is influenced by inner-coupling matrix, control gain, coupling strength and topological structures of the networks.  相似文献   

3.
The collective synchronization of a system of coupled logistic maps on random community networks is investigated. It is found that the synchronizability of the community network is affected by two factors when the size of the network and the number of connections are fixed. One is the number of communities denoted by the parameter rn, and the other is the ratio σ of the connection probability p of each pair of nodes within each community to the connection probability q of each pair of nodes among different communities. Theoretical analysis and numerical results indicate that larger rn and smaller σ are the key to the enhancement of network synchronizability. We also testify synchronous properties of the system by analysing the largest Lyapunov exponents of the system.  相似文献   

4.
We investigate a new generalized projective synchronization between two complex dynamical networks of different sizes. To the best of our knowledge, most of the current studies on projective synchronization have dealt with coupled networks of the same size. By generalized projective synchronization, we mean that the states of the nodes in each network can realize complete synchronization, and the states of a pair of nodes from both networks can achieve projective synchronization. Using the stability theory of the dynamical system, several sufficient conditions for guaranteeing the existence of the generalized projective synchronization under feedback control and adaptive control are obtained. As an example, we use Chua's circuits to demonstrate the effectiveness of our proposed approach.  相似文献   

5.
沈毅 《中国物理 B》2013,(5):637-643
We introduce a thermal flux-diffusing model for complex networks. Based on this model, we propose a physical method to detect the communities in the complex networks. The method allows us to obtain the temperature distribution of nodes in time that scales linearly with the network size. Then, the local community enclosing a given node can be easily detected for the reason that the dense connections in the local communities lead to the temperatures of nodes in the same community being close to each other. The community structure of a network can be recursively detected by randomly choosing the nodes outside the detected local communities. In the experiments, we apply our method to a set of benchmarking networks with known pre-determined community structures. The experiment results show that our method has higher accuracy and precision than most existing globe methods and is better than the other existing local methods in the selection of the initial node. Finally, several real-world networks are investigated.  相似文献   

6.
Synchronization in complex networks with a modular structure   总被引:1,自引:0,他引:1  
Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.  相似文献   

7.
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.  相似文献   

8.
张丽  杨晓丽  孙中奎 《物理学报》2013,62(24):240502-240502
时滞和噪声在复杂网络中普遍存在,而含有耦合时滞和噪声摄动的耦合网络同步的研究工作却极其稀少. 本文针对噪声环境下具有不同节点动力学、不同拓扑结构及不同节点数目的耦合时滞网络,提出了两个网络之间的广义投影滞后同步. 首先,构建了更加贴近现实的驱动-响应网络同步的理论框架;其次,基于随机时滞微分方程LaSalle不变性原理,严格证明了在合理的控制器作用下,驱动网络和响应网络在几乎必然渐近稳定性意义下能够取得广义投影滞后同步;最后,借助于计算机仿真,通过具体的网络模型验证了理论推理的有效性. 数值模拟结果表明,驱动网络与响应网络不但能够达到广义投影滞后同步,而且同步效果不依赖于耦合时滞和比例因子的选取,同时也揭示了更新增益和耦合时滞对同步收敛速度的显著性影响. 关键词: 复杂网络 广义投影滞后同步 随机噪声 时滞  相似文献   

9.
<正>The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper.Based on Lyapunov stability theory and Barbalat’s lemma,generalized matrix projective lag synchronization criteria are derived by using the adaptive control method.Furthermore,each network can be undirected or directed,connected or disconnected,and nodes in either network may have identical or different dynamics.The proposed strategy is applicable to almost all kinds of complex networks.In addition,numerical simulation results are presented to illustrate the effectiveness of this method,showing that the synchronization speed is sensitively influenced by the adaptive law strength,the network size,and the network topological structure.  相似文献   

10.
11.
A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication.  相似文献   

12.
Detecting overlapping communities is a challenging task in analyzing networks, where nodes may belong to more than one community. Many present methods optimize quality functions to extract the communities from a network. In this paper, we present a probabilistic method for detecting overlapping communities using a generative model. The model describes the probability of generating a network with the model parameters, which reflect the communities in the network. The community memberships of each node are determined based on a probabilistic approach using those model parameters, whose values can be obtained by fitting the model to the network. This method has the advantage that the node participation degrees in each community are also computed. The proposed method is compared with some other community detection methods on both synthetic networks and real-world networks. The experiments show that this method is efficient at detecting overlapping communities and can provide better performance on the networks where a majority of nodes belong to more than one community.  相似文献   

13.
Duanbing Chen  Yan Fu  Mingsheng Shang 《Physica A》2009,388(13):2741-2749
Community structure is an important property of complex networks. How to detect the communities is significant for understanding the network structure and to analyze the network properties. Many algorithms, such as K-L and GN, have been proposed to detect community structures in complex networks. According to daily experience, a community should have many nodes and connections. Based on these principles and existing researches, a fast and efficient algorithm for detecting community structures in complex networks is proposed in this paper. The key strategy of the algorithm is to mine a node with the closest relations with the community and assign it to this community. Four real-world networks are used to test the performance of the algorithm. Experimental results demonstrate that the algorithm proposed is rather efficient for detecting community structures in complex networks.  相似文献   

14.
Complex networks have been studied across many fields of science in recent years. In this paper, we give a brief introduction of networks, then follow the original works by Tsonis et al (2004, 2006) starting with data of the surface temperature from 160 Chinese weather observations to investigate the topology of Chinese climate networks. Results show that the Chinese climate network exhibits a characteristic of regular, almost fully connected networks, which means that most nodes in this case have the same number of links, and so-called super nodes with a very large number of links do not exist there. In other words, though former results show that nodes in the extratropical region provide a property of scale-free networks, they still have other different local fine structures inside. We also detect the community of the Chinese climate network by using a Bayesian technique; the effective number of communities of the Chinese climate network is about four in this network. More importantly, this technique approaches results in divisions which have connections with physics and dynamics; the division into communities may highlight the aspects of the dynamics of climate variability.  相似文献   

15.
刘金桂 《中国物理 B》2012,(12):130-134
<正>This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 < q < 1 is obtained based on the stability theory of the fractional-order system.The control method which combines active control with pinning control is then suggested to obtain the controllers.Furthermore,the adaptive strategy is applied to tune the control gains and coupling strength.Corresponding numerical simulations are performed to verify and illustrate the theoretical results.  相似文献   

16.
Jianshe Wu  Xiaohua Wang 《Physica A》2012,391(3):508-514
In this paper, we propose a simple random network model with overlapping communities controlled by several parameters, and investigate the influence of the overlapping community structure on the synchronization behavior under different parameters. It is found that the synchronizability of the network is mainly influenced by the overlapping size of the communities and the connectivity density of the overlapped group to the other interrelated communities, and has nothing to do with the intra-connectivity of the overlapped group. In addition, it is found that the highly interconnected communities can be almost synchronized in a given time scale, whereas the overlapped group is far from synchronization. Furthermore, the instantaneous frequencies of the nodes in the communities and their overlapped group are also investigated, which show that the nodes in the overlapped group will exhibit a remarkable oscillation with a weighted mean frequency of the other correlative communities.  相似文献   

17.
This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.  相似文献   

18.
A new family of networks, called entangled, has recently been proposed in the literature. These networks have optimal properties in terms of synchronization, robustness against errors and attacks, and efficient communication. They are built with an algorithm which uses modified simulated annealing to enhance a well-known measure of networks’ ability to reach synchronization among nodes. In this work, we suggest that a class of networks similar to entangled networks can be produced by changing some of the connections in a given network, or by just adding a few connections. We call this class of networks weak-entangled. Although entangled networks can be considered as a subset of weak-entangled networks, we show that both classes share similar properties, especially with respect to synchronization and robustness, and that they have similar structural properties.  相似文献   

19.
张智  傅忠谦  严钢 《中国物理 B》2009,18(6):2209-2212
Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizability or synchronization stability, of identical oscillators on complex networks with communities. A new weighted community network model is employed here, in which the community strength could be tunable by one parameter δ. The results showed that the synchronization speed of identical oscillators on community networks could reach a maximal value when δ is around 0.1. We argue that this is induced by the competition between the community partition and the scale-free property of the networks. Moreover, we have given the corresponding analysis through the second least eigenvalue λ2 of the Laplacian matrix of the network which supports the previous result that the synchronization speed is determined by the value of λ2.  相似文献   

20.
We investigate the problem of function projective synchronization (FPS) in drive-response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号