首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
采用简便快捷的无种子法一步完成了纳米金棒的制备.通过改变实验条件可以调控纳米金棒的吸收峰从可见到近红外转移.将巯基聚乙二醇(PEG-SH)置换金棒表面的十六烷基三甲基溴化铵(CTAB)分子,大大提高了金棒的生物相容性.制备的纳米金棒在近红外(NIR)光照射下对肿瘤细胞有很好的杀伤效果.研究结果为纳米金棒用于抗肿瘤治疗提供了实验基础.  相似文献   

2.
高倩  钱勇  夏炎  蒋彩云  钱卫平 《化学学报》2011,69(14):1617-1621
报道了一种制备高长径比金纳米棒的新方法. 在25 ℃条件下, 采用种子介导生长法, 通过优化表面活性剂十六烷基三甲基溴化铵(CTAB)的浓度, 制备了长度(200±18.62) nm, 长径比大于10的金纳米棒, 并讨论了金纳米棒的形成机制. 结果表明, 金纳米棒的长径比和纵向吸收波长与CTAB的浓度有关. 此外, 通过提高反应液的离子强度, 利用制备的金纳米棒与球形颗粒不同的静电作用将金纳米棒分离纯化. 运用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对金纳米棒的表面形貌进行表征.  相似文献   

3.
金纳米棒因其独特的光学活性(纵向和横向两个等离子体共振吸收峰,可调范围从可见光区到近红外区)、长径比可调,表面易于修饰,生物相容性良好而使得其在纳米生物学和生物医学等领域具有广泛的应用前景。金纳米棒的合成及表面修饰直接决定着其物理化学性质,进而影响其生物相容性及其在生物医学中的应用。本文综述了金纳米棒的可控制备方法(包括模板法、电化学法、光化学法和晶种法)、表面可控修饰方法及其在纳米生物学和生物医学中的应用新进展,重点总结了金纳米棒的表面可控修饰及其在分子探针、生物传感、生物成像、药物载体、基因载体和光热疗法的最新研究进展。最后针对金纳米棒在生物应用过程中的一些瓶颈问题(如:特异性识别能力需要增强和荧光量子产率尚待提高等)提出了将手性分子或智能聚合物引入到金纳米棒表面进行可控修饰,以期增强其特异性识别能力并提高荧光量子产率,为金纳米棒的发展提供了新的思路。  相似文献   

4.
大长径比金纳米棒的合成及其单细胞毒性研究   总被引:1,自引:0,他引:1  
周海英  周瑞  熊斌  何彦 《分析化学》2012,(12):1807-1815
利用三步晶种生长法合成长径比约为14的大长径比金纳米棒(GNR),利用巯基十一酸(MUDA)对金纳米棒表面进行了生物适应性修饰,并在宏观水平上研究了修饰前后的金纳米棒在对细胞活性的影响。利用单细胞方法分别考察了修饰后的纳米金棒对细胞贴壁过程、增殖速率、细胞内ROS以及骨架排布的影响。虽然MTT细胞活性结果显示内吞后的金纳米棒对细胞无毒,但单细胞毒性分析方法发现,不同浓度纳米金棒对早期贴壁过程有较小的影响,且内吞的纳米金棒在一定程度上促进了细胞的增殖,而高浓度下纳米金棒引起了细胞内ROS含量的升高,并破坏了细胞内骨架纤维排布。本研究建立了用单细胞行为分析纳米颗粒对细胞毒性的方法,证明了以往仅仅利用MTT等宏观手段分析纳米材料生物适应性是不足的。纳米材料在生物医学领域的进一步应用还应考虑单细胞及分子水平上的毒性效应。  相似文献   

5.
以不同阴离子表面活性剂作为添加剂种子生长法制备金纳米棒,并考察阴离子表面活性剂种类对金纳米棒形貌及光学性质的影响。在十二烷基苯基磺酸钠(SDBS)存在下,金纳米棒的产率明显高于使用十二烷基磺酸钠的反应体系。对添加SDBS的种子生长法制备金纳米棒的反应条件进行优化,得到十六烷基三甲基溴化铵、SDBS、抗坏血酸和硝酸银的最佳浓度分别为0.04 mol.L-1、2.4 mmol.L-1、1.2 mmol.L-1和0.08 mmol.L-1。在此条件下,金纳米棒的生长在30 min内完成,所制备的金纳米棒表面等离子共振吸收峰位于823 nm,其横纵比为(5±0.03)。当改变生长液中硝酸银浓度时,金纳米棒的尺寸也随之发生改变。此外,我们还探讨了SDBS的作用机理。相对于经典种子生长法,新方法制备纳米金棒在尺寸可调性、单分散性和生物毒性方面明显改善,可广泛应用于各种光学及生物分析。  相似文献   

6.
采用简便快捷的无种子法一步完成了纳米金棒的制备. 通过改变实验条件可以调控纳米金棒的吸收峰从可见到近红外转移. 将巯基聚乙二醇(PEG-SH)置换金棒表面的十六烷基三甲基溴化铵(CTAB)分子,大大提高了金棒的生物相容性. 制备的纳米金棒在近红外(NIR)光照射下对肿瘤细胞有很好的杀伤效果.研究结果为纳米金棒用于抗肿瘤治疗提供了实验基础.  相似文献   

7.
γ-AlOOH作为液相法合成γ-Al_2O_3的前驱体,其形貌与最终产物的性能密切相关。本文采用水热法合成γ-AlOOH纳米棒,通过改变Al3+浓度和沉淀剂的种类调控γ-AlOOH纳米棒的长径比,利用X射线衍射仪(XRD)和透射电子显微镜(TEM)表征产物的晶体结构和形貌。结果表明,随Al3+浓度增大可得到长径比在5.9~8.0的γ-AlOOH纳米棒,而改变沉淀剂的种类可进一步将长径比增大到8.0~10.0。通过对产物结晶过程的分析,发现增大Al3+浓度和增强沉淀剂碱性均可以促进铝离子与羟基的配合。提高反应体系中Al(OH)3浓度,有利于γ-AlOOH晶粒的成核,促进了晶核之间的定向接触,从而提高了纳米棒的长径比。长径比为10.0的γ-AlOOH纳米棒烧结所得纳米γ-Al_2O_3改性变压器油(体积分数为0.1%)的正冲击击穿强度较纯油提高9.9%.  相似文献   

8.
基于金纳米棒的生物检测、细胞成像和癌症的光热治疗   总被引:5,自引:0,他引:5  
由于金纳米棒颗粒独特的可调的表面等离子共振特性,使得金纳米棒颗粒在纳米复合材料和功能化纳米器件的构建、纳米生物技术、生物医学等领域具有广泛而重要的应用前景。本文综述了金纳米棒颗粒的生物检测、细胞成像和癌症的光热治疗方面的最新研究进展,并介绍了金纳米棒颗粒的光学性质和金纳米棒颗粒和几种主要的表面修饰方法,对金纳米棒颗粒在生物应用过程中存在的主要问题进行了讨论。  相似文献   

9.
王健  吴昊  黄承志 《中国科学B辑》2008,38(10):929-937
应用等离子共振吸收光谱和扫描电子显微镜,观察了碘和盐酸四环素反应引起的金纳米棒形态的变化.实验表明,单质碘能对金纳米棒产生融合作用,引起金纳米棒径向比的减小和纵向吸收波长的蓝移;但当盐酸四环素存在时,单质碘与盐酸四环素作用,减低了碘的有效浓度,减弱了碘对金纳米棒的融合作用,使金纳米棒的纵向吸收峰随盐酸四环素浓度的增大发生线性红移.据此本文建立了一种测定盐酸四环素的方法.方法的线性范围为5.0×10^-5mol/L~5.0×10^-4mol/L,检测限为2.4×10^-6mol/L(3σ/k).常见物质不干扰测定.方法成功应用于合成样中四环素测定,回收率在92.8%~107.2%之间,RSD值小于4-3%.用标准加入法测定了3个乳制品厂生产的牛奶中盐酸四环素,表明牛奶中的四环素残余物浓度较低,符合安全标准.  相似文献   

10.
贵金属纳米结构的光学性质与其尺寸、形貌、介质环境等因素的相关性是基础研究领域的重要内容.本文利用时域有限差分(FDTD)方法,计算了不同构型二聚体和多聚体的表面等离子体共振(SPR)特性.研究了金纳米棒结构和组装方式对SPR耦合效应的影响,模拟结果与实验规律比较吻合.金纳米棒二聚体的光吸收结果表明:对于肩并肩(S-S)的组装体,随着间隙的减小,金纳米棒的横向SPR(SPRT)峰有较小的红移,而纵向SPR(SPRL)峰显著蓝移.对于端对端(E-E)的组装体,随着组装体间隙的减小,金纳米棒的SPRT峰无明显移动,而SPRL峰显著红移,并在近红外较长波段范围内出现新的共振峰,其强度随着间隙的减小而增强;结合弹簧振子模型和纳米颗粒在外电场作用下的极化,对组装体共振吸收峰的移动和新的耦合共振峰的出现提出了初步的解释.  相似文献   

11.
金纳米棒具有独特的物理化学性质和良好的生物相容性,在众多的各向异性金纳米结构中引起了研究者的关注.本文综述了金纳米棒的各种制备方法,详尽评价了种子法制备金纳米棒过程的影响因素,介绍了金纳米棒用作药物载体和癌症的光热治疗方面的应用进展,并对金纳米棒的研究前景进行了展望.  相似文献   

12.
随着生物医学的发展,对生物成像技术和成像分辨率的要求越来越高,纳米材料和技术被越来越多地应用到生物医学领域.各向异性的金纳米棒由于具有较高的电子密度、较大的吸收截面、特殊的表面等离子共振光学特性、优良的生物相容性和化学稳定性而被广泛应用于生物成像领域.复杂的活细胞组织内纳米级目标的位置和动态的空间构型对于我们理解很多生物物理学过程的细节问题至关重要.本文结合本课题组在该领域的研究经验,并从金纳米棒局部等离子共振特性和偏光特性出发,综述了金纳米棒作为方向探针的3D跟踪定位成像技术与手段.包括暗场成像技术、微分干涉成像、光热成像、共聚焦显微镜成像等生物成像技术和脱焦成像、全内反成像和双通道等生物成像手段.同时阐述了金纳米棒作为方向探针在生物成像领域中的应用进展.  相似文献   

13.
金纳米棒在紫外-可见-近红外(UV-Vis-NIR)波段具有独特的可调节表面等离子体共振(SPR)光学特性,其良好的稳定性、低生物毒性、亮丽的色彩和在催化、信息存储、生物医学等领域广阔的应用前景受到相关研究领域的广泛关注.结合已有的研究基础,本文主要综述了金纳米棒光学性质的研究进展,包括表面等离子体共振、局域场增强效应、共振耦合效应及荧光特性,并对金纳米棒的应用做了展望.  相似文献   

14.
采用金-铜共混法制备了金纳米棒,研究了铜离子存在下金纳米棒的等离子体共振吸收及形貌的变化.通过调节反应中铜离子的加入量及晶体生长过程中各反应参数,使金纳米棒复合纳米材料的形貌、长径比和光学性质得到有效控制.比较了纯金纳米棒与掺入铜的金纳米棒的光热转换性能和拉曼光谱的增强性能.结果表明,铜离子的掺杂可以有效控制金纳米棒的生长以及金纳米棒的形貌.加入铜离子的金纳米棒的光热转换效率明显低于单纯的金纳米棒,但是铜掺杂的金纳米棒在被用作拉曼基底时,表面增强拉曼性质却优于纯金纳米棒.  相似文献   

15.
采用电流脉冲法在自组装了对氨基苯硫酚单层的金电极(PATP/Au)上电沉积硫化镉(CdS)纳米薄膜,运用扫描电子显微镜(SEM)和X射线衍射谱(XRD)对其形貌和结构进行了表征,发现得到的是垂直基底生长的CdS纳米棒有序阵列.研究电沉积中电流脉冲参数的影响时发现:随着电流脉冲宽度增大,CdS纳米棒的尺寸增大,有序性降低;脉冲幅度增大,则纳米棒尺寸增大,覆盖度也随之增大.因此通过调节脉冲宽度和脉冲幅度,可对所制备的CdS纳米薄膜的形貌和尺寸进行调控.运用循环伏安法和计时电位法对电沉积机理进行了探究.根据实验结果我们认为Au电极自组装PATP单分子层后,PATP分子中的-NH2与溶液中Cd2+相互作用,使沉积时的电子通过表面的PATP分子链进行传递.并进一步提出纳米CdS在PATP/Au电极上电化学合成的生长机理.  相似文献   

16.
制备了谷胱甘肽(GSH)功能化的金纳米棒复合材料,根据金纳米棒的等离子体吸收峰对其组装排列敏感的特性,研究了功能化的金纳米棒在不同p H值下的组装行为及与Cu2+离子作用后引起的聚集程度、排列方式和光学吸收等变化.同时,测试了纯金纳米棒和谷胱甘肽修饰的金纳米棒分别与铜离子作用后所得复合材料的光热转换性能.结果表明,相对于纯金纳米棒材料强的光热转换效应,铜离子能明显降低复合材料的光热转换效应,与其它金属离子比较,GSH修饰的金纳米棒的等离子光学特性对铜离子具有选择性的变化.  相似文献   

17.
以金纳米棒为荧光探针,在20%甲醇(pH 5.0~6.0)介质中,以植物多酚化合物芒果苷、瑞香素和白藜芦醇为检测对象,建立了3种植物多酚的灵敏、简便、快速检测新方法.多酚化合物基于其与金纳米棒表面的十六烷基三甲基溴化铵(CTAB)分子间的疏水作用而在金纳米棒表面富集,同时使金纳米棒在719 nm处的荧光强度减弱,在一定范围内多酚化合物的浓度与金纳米棒荧光强度成正比,其检出限分别为5.0×10-8、8.0×10-8、2.0×10 -7mol/L.  相似文献   

18.
纳米颗粒作为信号感应单元在化学与生物传感应用中已引起广泛关注,这些功能和金属纳米结构与光相互作用时产生的表面等离子体共振密切相关.表面增强拉曼散射(SERS),是指吸附在粗糙的金属纳米结构表面的被分析物,在光照射下其拉曼光谱获得显著增强的异常表面光学现象,近年来.SERS技术已广泛用于物质检测和生物传感等研究,在生物医学领域表现出巨大的应用潜力并取得了令人瞩目的研究成果.本文阐述了金纳米棒的制备方法、表面修饰和共轭生物分子的方法.并从金纳米棒表面增强拉曼散射的角度系统阐述基于金纳米棒表面增强拉曼散射的1D,2D,3D自组装,并介绍了近期金纳米棒表面增强拉曼散射在生物医学检测与成像中最具有代表性的应用研究.  相似文献   

19.
金纳米棒由于其独特物理性质而在众多的各向异性金纳米颗粒中赢得了关注。目前,金纳米棒在纳米电子学、光学、生物医药等研究领域均具有良好的应用前景。对金纳米棒合成的有效调控直接决定着其形状、尺寸和长径比,而这些又进一步影响着金纳米棒的物理性质。本文梳理了金纳米棒制备方法的发展脉络,以模板法、电化学方法、种子生长法以及近年来出现的无种子生长法为主线,系统综述了金纳米棒制备过程实验参数调控对产物结构、物理性质的影响,详细阐述了关于单晶以及孪晶金纳米棒的生长机理,并介绍了提高产物纯度的分离纯化手段。  相似文献   

20.
通过调控过氧化氢与金纳米棒相互作用时溶液的H~+和Br~-浓度,考察了过氧化氢刻蚀金纳米棒的条件.通过静电相互作用将聚苯乙烯磺酸钠修饰到带正电的金纳米棒表面,并探讨了表面配体变化对过氧化氢与金纳米棒相互作用的影响,比较了聚苯乙烯磺酸钠浓度改变对过氧化氢刻蚀金纳米棒所引起的等离子体吸收峰的变化.结果表明,过氧化氢与金纳米棒作用过程中,H~+浓度增加可以加快刻蚀反应速率,Br~-起到稳定金离子的作用.采用聚苯乙烯磺酸钠修饰抑制了过氧化氢对金纳米棒的刻蚀,当聚苯乙烯磺酸钠与金纳米棒表面的CTAB完全作用后,复合材料电位接近零,金纳米棒的稳定性降低,继续增加聚苯乙烯磺酸钠的量至电位为负,复合材料稳定性增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号