首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   15篇
  国内免费   16篇
化学   23篇
晶体学   3篇
综合类   2篇
物理学   32篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
1.
本文用含时密度泛函理论研究了线性Na原子链的表面等离激元机理.主要在原子尺度下模拟计算了体系随着原子数增加及原子间距变化的集体激发过程.研究发现线性原子链有一个普遍的特性——存在一个纵模和两个横模.两个横模一般在实验上很难被观测到.纵模随着原子链长度增加,能量红移的同时,该纵模主峰的强度呈线性增长.随着原子个数的增加,端点模式(TE)开始蓝移,能量和偶极强度都逐渐趋向饱和.横模能量被劈裂的原因概括如下:(一)每个位置的电子受到的势不同,在两端的电子受到的势要比在中间的电子受到的势要高,因此两端的电荷积累也比中间多;(二)端点存在悬挂键,所以中间的电子-电子间相互作用与端点的不一样,这两方面又都与原子间距d有关.  相似文献   
2.
冷原子团的高斯半径和温度是用来描述冷原子团,反映冷原子特性的主要参数.本文提出了一种新型的测量冷原子团高斯半径和温度的方法,采用过饱和近共振激光束照射冷原子团,原子由于吸收了光子动量偏离原来的运动轨道,而不能被探测系统所探测.根据冷原子团的原子分布规律,理论上构建了物理模型,通过改变作用于冷原子团的推除光的尺寸来控制被推除的冷原子数目,计算得到了不同高斯半径的冷原子团剩余原子数目与推除光尺寸的关系.以国家授时中心铯原子喷泉为实验平台,利用横向偏置的刀口光阑在不同下落高度控制作用于冷原子团的推除光尺寸,测量出不同高度的剩余原子数目随推除光尺寸的变化情况.应用理论公式拟合实验数据,最终得到冷原子团在磁光阱中心正下方10 mm和160 mm处的高斯半径分别为(1.54±0.05) mm和(3.29±0.08) mm,进一步计算得到冷原子团温度为(7.50±0.49)μK.为了验证刀口法的准确性和可重复性,在同一实验条件下用刀口法和飞行时间法对冷原子团温度进行了测量与对比,最终得到两种方法的测量结果基本一致.  相似文献   
3.
针对固体介质间隔层的镀膜标准具, 以1 064 nm激光镀膜标准具为例, 首先研究了反射膜堆数对反射带宽、基底厚度以及对自由光谱区的影响:标准具的带宽随着膜层堆数增加而减小, 自由光谱区随着基板厚度的增加而减小;其次研究了基底误差对标准具中心波长定位和透过率的影响, 通过定量数值计算证明了基底误差可通过标准具的使用角度补偿;针对典型的H(LH)m/Substrate/(HL)mH和L(LH)m/Substrate/(HL)mL两个膜系结构, 研究了入射激光发散角对标准具中心波长偏移、通带半宽度、中心波长透过率和最大透过率的影响。随着激光发散角的增加, 中心波长向短波方向移动, 通带半宽度、中心波长透过率和最大透过率呈现下降的趋势, 并且第二个膜系结构的标准具性能优于第一个膜系结构的标准具。  相似文献   
4.
利用脉冲激光沉积(PLD)法在玻璃基片上室温生长SnS薄膜,并在Ar气保护下分别在200,300,400,500,600℃对薄膜进行快速退火处理。利用X射线衍射(XRD)、拉曼光谱仪(Raman)、原子力显微镜(AFM)、场发射扫描电子显微镜( FE-SEM)、紫外-可见-近红外分光光度计( UV-Vis-NIR)、Keithley 4200-SCS半导体参数分析仪研究了快速退火温度对SnS薄膜的晶体结构、表面形貌以及有关光学性质和电学性能的影响。所制备的SnS薄膜样品沿(111)晶面择优取向生长,退火温度为400℃时的薄膜结晶质量最好。薄膜均具有SnS特征拉曼峰。随着退火温度的升高,薄膜厚度逐渐减小,而平均颗粒尺寸逐渐增大。不同退火温度下的SnS薄膜在可见光范围内的吸收系数均为105 cm-1量级,400℃时退火薄膜的直接带隙为1.92 eV。随着退火温度从300℃升高到500℃,电阻率由1.85×104Ω·cm下降到14.97Ω·cm。  相似文献   
5.
6.
建立非平行光入射多层膜的模型,给出了在圆形光束锥角入射时的薄膜特性表达式,对三类典型光学薄膜即多腔滤光片、非偏振分光薄膜和非偏振截止滤光薄膜的特性进行了数值实验。研究结果表明:随着光束入射锥角的增加,多腔滤光片的影响是中心波长向短波方向移动,透射率下降和通带形状退化;非偏振分光薄膜的s和p偏振透射率增加,宽带波纹度增加;非偏振截止滤光薄膜的通带透射率出现周期振荡,s偏振的通带波纹度大于p偏振,通带波纹度总体具有增加的趋势,过渡区的陡度具有变大的趋势。  相似文献   
7.
首先对大学物理传统课堂教学现状进行分析, 指出了大学物理传统课堂教学中存在的问题, 然后分析 了“ MOOC” 教学理念在大学物理教学中的优势, 进而探讨了如何将“ MOOC” 教学理念融入大学物理教学实践, 实 现线上线下结合, 优势互补, 以达到最优化的教学效果  相似文献   
8.
刘丹丹  张红 《中国物理 B》2011,20(9):97105-097105
We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on.  相似文献   
9.
在细胞和分子水平上,研究了稀土化合物氯化铽(TbCl3)对成骨细胞MC3T3-E1增殖、分化及矿化功能的影响。结果表明,细胞水平上,浓度为0.0001、0.001、0.01、0.1、1和10 μmol·L-1的TbCl3均促进MC3T3-E1细胞的增殖、分化及其矿化功能,然而,当浓度升至为100和1000 μmol·L-1时,TbCl3表现出抑制作用。分子水平上,浓度为0.0001和0.1 μmol·L-1的TbCl3明显上调成骨分化相关基因骨形成蛋白2(BMP-2),碱性磷酸酶(ALP),骨涎蛋白(BSP),Ⅰ型胶原蛋白(Col Ⅰ),骨钙素(OCN)和runt 相关转录因子2(Runx2)的表达。浓度为1 000 μmol·L-1的TbCl3则抑制上述成骨分化相关基因的表达。浓度为0.000 1、0.1和1 μmol·L-1的TbCl3促进成骨分化相关蛋白Runx2,BMP-2和OCN的表达;结果显示,低浓度的TbCl3促进MC3T3-E1细胞的成骨分化及矿化功能,而高浓度TbCl3则呈现出抑制作用。TbCl3通过调控Runx2的表达刺激早期成骨分化相关基因BMP-2、Col Ⅰ和晚期成骨分化相关基因ALP、OCN的表达,从而诱导MC3T3-E1成骨分化。  相似文献   
10.
为了改善聚芴的载流子注入特性,采用密度泛函理论B3LYP/6-31G*方法计算比较了芴、芴-联吡啶和芴-菲咯啉低聚物的几何结构、电子结构、最低激发能及重组能等,并外推到相应聚合物.结果发现:联吡啶/菲咯啉含氮芳杂环的缺电子性质能够诱导聚芴的最高占据轨道(HOMO)和最低空轨道(LUMO)能级分别下降0.45/0.47eV和0.32/0.38eV,提高电子注入能力的同时,调控载流子注入平衡;联吡啶单元的引入导致电子和空穴重组能升高(降低聚芴的载流子迁移率),而芴-菲咯啉共聚物显示了与聚芴相似的迁移性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号