首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unprecedented radical (phenylsulfonyl)difluoromethylation of terminal alkenes with PhSO2CF2I has been achieved by using Et3B/air as an initiator. This synthetic methodology was also used in the one-pot regioselective preparation of PhSO2CF2-substituted alkanes, and in the regio- and stereoselective preparation of PhSO2CF2-substituted alkenes with high E/Z ratio (up to > or =100:1).  相似文献   

2.
以二甲基亚砜(DMSO)或四氢呋喃(THF)作为促进剂,六苯基环三硅氮烷三锂盐(P3NLi)可以引发六甲基环三硅氧烷(D3)进行开环聚合,通过29Si-NMR谱的硅峰面积比例确定了不同反应时间D3的转化率,经过计算得到聚合反应对THF、DMSO、D3、P3NLi的反应级数,并给出了对应的动力学方程.  相似文献   

3.
The alpha,alpha'-stabilized carbanion complexes [PhSO(2)CHCNNa.THF], 3, [t-BuSO(2)CHCNNa], 4, [PhSO(2)CHCNK], 5, [t-BuSO(2)CHCNK], 6, and [MeSO(2)CHCNLi.TMEDA], 7, have been synthesized via the metalation of the parent (organo)sulfonylacetonitriles by BuLi, BuNa, or BnK in THF solution (or THF/TMEDA in the case of 7). In addition, complexes 3 and 7 have been characterized by single-crystal X-ray analyses and have been found to adopt related structures in the solid state. Complex 7 is a molecular dimer containing a central 12-membered (OSCCNLi)(2) ring core, with each metal rendered tetracoordinate by binding to a chelating TMEDA molecule. As found in related complexes, no direct carbanion to lithium contacts are present in the structure of 7. Complex 3 forms a polymeric cage structure composed of associated "dimeric" (OSCCNNa)(2) rings, similar to those found in 7. The larger sodium cations, and the presence of only one THF molecule/metal, allow additional contacts with the anions, leading to hexacoordination at the metal centers. These contacts include long-range transannular Na-N interactions (2.8042(14) A) across the central dimeric ring and "interdimer" Na-C connections (2.8718(15) A). Dissolution of complexes 3-6 and their lithiated derivatives [PhSO(2)CHCNLi.TMEDA], 1, and [t-BuSO(2)CHCNLi.THF], 2, in DMSO-d(6) results in almost identical chemical shifts for each type of ligand. This suggests that charge-separated complexes of the form [RSO(2)CHCN](-)[M(DMSO-d(6))(n)()](+) are formed in highly polar solution.  相似文献   

4.
The reaction of diethylmagnesium with diphenylphosphane yields [(THF)Mg(Et)PPh 2] infinity ( 1; THF = tetrahydrofuran) with bridging PPh 2 ligands and average Mg-P bond lengths of 262.2 pm. The metalation reaction of MgEt 2 with HPPh 2 and H 2PPh with a 1:2 stoichiometry gives [(THF) 4Mg(PPh 2) 2] ( 2) and [(THF) 6Mg 4{P(H)Ph} 8] ( 3), respectively. Tetranuclear 3 contains three chemically different phenylphosphanide groups with characteristic P-H stretching frequencies at 2261, 2286, and 2310 cm (-1). The metathesis reaction of potassium phenylphosphanide with CaI 2 yields oligomeric (THF) 3Ca[P(H)Ph] 2 ( 4). A similar reaction with SrI 2 and BaI 2 gives polymeric [(THF) 2Sr{P(H)Ph} 2] infinity ( 5) and [(THF)Ba{P(H)Ph} 2] infinity ( 6), respectively, showing one stretching frequency at 2285 cm (-1). These compounds crystallize polymeric with bridging phenylphosphanide substituents. The addition of Et 2O to a mixture of KPPh 2 and Mg(PPh 2) 2 in THF initiates the crystallization of (Et 2O)K[(THF)Mg(PPh 2) 3] ( 7) with a strand structure and (Et 2O) x(THF) yK 2[Mg(PPh 2) 4] ( 8) with a layer structure depending on the stoichiometry. The crystals of 8 easily lose THF and Et 2O and, therefore, the content of these ethers varies. Recrystallization of 8 from hot 1,4-dioxane (diox) yields (diox) 2K 2[Mg(PPh 2) 4] ( 9) with a layer structure comparable to that of 8. The central structural units are eight-membered K 2Mg 2P 4 rings that are interconnected by P-K-P bridges. In a THF solution, the magnesiates 7- 9 dissociate into the homometallic derivatives KPPh 2 and Mg(PPh 2) 2, as can be seen from NMR experiments.  相似文献   

5.
合成了一系列带有不同取代基的β-二亚胺配体及其Ni(Ⅱ)的配合物.利用核磁共振谱、元素分析和单晶X射线衍射等手段对配体及配合物进行了表征.元素分析和单晶结构分析表明,在相同的实验条件下苯基取代的β-二亚胺配体锂盐与NiCl2反应只能得到双配体化合物1;而2,6-二甲基苯基及2,6-二异丙基苯基取代的配体锂盐与NiCl2反应得二聚的单氯化物2和3,2个Ni原子通过双氯桥连接在一起.配合物2和3经烷基铝活化后催化乙烯聚合可得到高分子量聚乙烯,活性可达到2.0×105gPE/(molcat·h),分子量最高可达到100万以上.  相似文献   

6.
Leung WP  So CW  Kan KW  Chan HS  Mak TC 《Inorganic chemistry》2005,44(21):7286-7288
The reaction of bis(germavinylidene) [(Me3SiN=PPh2)2C=Ge-->Ge=C(PPh2=NSiMe3)2] (1) with CpMn(CO)2(THF) (Cp = eta5-C5H5) in THF afforded [(Me3SiN=PPh2)2C=Ge-->Mn(CO)2Cp] (2). Similar reaction of 1 with (cod)RhCl (cod = 1,5-cyclooctadiene) in THF gave [(Me3SiN=NPPh2)2{(cod)Rh}C-GeCl] (3). The results suggested that reactive germavinylidene may exist in solution. The X-ray structures of 2 and 3 have been determined.  相似文献   

7.
The reaction of [(TMS)2N]3La(mu-Cl)Li(THF)3 (1) and HSPh produced a bimetallic complex [{(TMS)2N}2La(THF)]2(mu-SPh)(mu-Cl)] (2). Compound [{(TMS)2N}2La5O(SPh)10LiCl2(THF)6] (3) was prepared by control of the hydrolysis of 2 and LiCl or 1 and HSPh with the proper amount of water. 1 was treated first with 1/6 equiv of H2O and then with equimolar HSPh; a polymeric complex [{(TMS)2N}2(mu-SPh)La(mu-SPh)Li(THF)2](infinity) (4) was isolated. 3 contains a central [(mu-SPh)4(mu3-SPh)2{La(THF)}4(mu3-O)]4+ tetrahedral fragment in which two La atoms are linked by a pair of mu-SPh- and mu3-Cl- ligands to a [{(TMS)2N}2La]+ fragment, while the other two are bridged by two mu-SPh- ligands to a [Li(THF)2]+ fragment, forming a bee-shaped structure.  相似文献   

8.
《Mendeleev Communications》2022,32(6):759-762
The reactions of monomeric complexes [(dpp-bian)M(THF)n](M = Mg, n = 3; M = Ba, n = 5; dpp-bian = 1,2-bis[(2,6-di-isopropylphenyl)imino]acenaphthene) with 4,4'-bipyridine (4,4'-bipy) in THF proceed with electron transfer from dpp- bian2– to 4,4'-bipy0 to afford 1D coordination polymers [(dpp-bian)M(4,4'-bipy)(THF)n]m (M = Mg, n = 1; M = Ba, n = 2) that contain simultaneously radical anion ligands dpp-bian– and 4,4'-bipy . Addition of DME to coordination polymer [(dpp-bian)Mg(4,4'-bipy)(THF)n]m results in fragmentation of polymeric chains to give dinuclear magnesium species [{(dpp-bian)Mg(DME)}2(4,4'-bipy)]. Barium analogue [{(dpp-bian)Ba(DME)2}2(4,4'-bipy)] has been prepared by reacting of complex [(dpp-bian)Ba(DME)2.5] with 4,4'-bipy in DME.  相似文献   

9.
(PhSO2)2CFI was prepared in quantitative yield by the iodination of fluorobis(phenylsulfonyl)methane and utilized in facile radical bis(phenylsulfonyl)monofluoromethylation of various terminal alkenes. The synthetic methodology was further extended for the preparation of monofluoromethyl-substituted alkenes.  相似文献   

10.
The synthesis, characterization and reactivity of heteroleptic rare earth metal complexes supported by the carbon-bridged bis(phenolate) ligand 2,2'-methylene-bis(6-tert-butyl-4-methyl-phenoxo) (MBMP(2-)) are described. Reaction of (C(5)H(5))(3)Ln(THF) with MBMPH(2) in a 1 : 1.5 molar ratio in THF at 50 degrees C produced the heteroleptic rare earth metal bis(phenolate) complexes (C(5)H(5))Ln(MBMP)(THF)(n) (Ln = La, n = 3 (); Ln = Yb (), Y (), n = 2) in nearly quantitative yields. The residual C(5)H(5)(-) groups in complexes to can be substituted by the bridged bis(phenolate) ligands at elevated temperature to give the neutral rare earth metal bis(phenolate) complexes, and the ionic radii have a profound effect on the structures of the final products. Complex reacted with MBMPH(2) in a 1 : 0.5 molar ratio in toluene at 80 degrees C to produce a dinuclear complex (MBMP)La(THF)(mu-MBMP)(2)La(THF)(2) () in good isolated yield; whereas complexes and reacted with MBMPH(2) under the same conditions to give (MBMP)Ln(MBMPH)(THF)(2) (Ln = Yb (), Y ()) as the final products, in which one hydroxyl group of the phenol is coordinated to the rare earth metal in a neutral fashion. The reactivity of complexes and with some metal alkyls was explored. Reaction of complex with 1 equiv. of AlEt(3) in toluene at room temperature afforded unexpected ligand redistributed products, and a discrete ion pair ytterbium complex [(MBMP)Yb(THF)(2)(DME)][(MBMP)(2)Yb(THF)(2)] () was isolated in moderate yield. Furthermore, reaction of complex with 1 equiv. of ZnEt(2) in toluene gave a ligand redistributed complex [(mu-MBMP)Zn(THF)](2) () in reasonable isolated yield. Similar reaction of complex with ZnEt(2) also afforded complex ; whereas the reaction of complex with 1 equiv. of n-BuLi in THF afforded the heterodimetallic complex [(THF)Yb(MBMP)(2)Li(THF)(2)] (). All of these complexes were well characterized by elemental analyses, IR spectra, and single-crystal structure determination, in the cases of complexes , and -.  相似文献   

11.
Xu X  Zhang Z  Yao Y  Zhang Y  Shen Q 《Inorganic chemistry》2007,46(22):9379-9388
A series of neutral and anionic bis(phenolate) lanthanide amides were synthesized by general metathesis reactions, and their reactivity was explored. Protolytic ligand exchange reactions of MBMPH2 (MBMP = 2,2'-methylene bis(6-tert-butyl-4-methyl-phenolate)) with [Ln{N(TMS)2}2(mu-Cl)(THF)]2 (TMS = SiMe3) afforded the desired bridged bis(phenolate) lanthanide chlorides [(MBMP)Ln(mu-Cl)(THF)2]2 [Ln = Nd (1), Yb (2)] in high isolated yields. These lanthanide chlorides were found to be useful precursors for the synthesis of the corresponding lanthanide derivatives. Reactions of 1 and 2 with 2 equiv of NaN(TMS)2 in THF produced the expected neutral bis(phenolate) lanthanide amido complexes (MBMP)Ln[N(TMS)2](THF)2 [Ln = Nd (3), Yb (4)] in high yields. Whereas the reactions of 1 and 2 with LiN(TMS)2 in a 1:4 molar ratio gave the anionic bis(phenolate) lanthanide amides as discrete ion-pair complexes [Li(THF)4][(MBMP)Ln{N(TMS)2}2] [Ln = Nd (5), Yb (6)] in high isolated yields. Further study revealed that 5 and 6 can also be conveniently synthesized in high yields by the direct reactions of MBMPH2 with [Ln{N(TMS)2}2(mu-Cl)(THF)]2 in a 2:1 molar ratio, and then with 4 equiv of nBuLi. The reactivity of the neutral and anionic bis(phenolate) lanthanide amides was comparatively investigated. It was found that the insertion reactions of carbodiimide into the Ln-N bond of neutral lanthanide amido complexes 3 and 4 gave the anticipated bis(phenolate) lanthanide guanidinate complexes [(mu-O-MBMP)Nd{(iPrN)2CN(TMS)2}]2 (7) and (MBMP)Yb[(iPrN)2CN(TMS)2] (8), respectively, in high yields, whereas the similar reaction of carbodiimide with anionic amido complex 5 provided the unexpected ligand-redistributed products, and the homoleptic ion-pair bis(phenolate) neodymium complex [Li(DME)2(THF)][(MBMP)2Nd(THF)2] (9) was finally isolated as one of the products. Furthermore, the anionic bis(phenolate) lanthanide amides showed higher catalytic activity for the polymerization of epsilon-caprolactone than the neutral ones. All of the complexes were characterized with elemental analysis and IR spectra, and the definitive molecular structures of 1-3 and 5-9 were provided by single-crystal X-ray analyses.  相似文献   

12.
Two general routes to binucleating bis(amidinate) ligands based on dibenzofuran and 9,9-dimethylxanthene backbones are reported. The free-base form of one of the ligands, (Ph,Mes)L(DBF)H(2), forms a 1:1 adduct with acetone. Single-crystal X-ray diffraction of this adduct reveals bidentate H-bonding of the bis(amidine) to the ketone oxygen. Bond lengths suggest that the individual H-bonds are relatively weak, yet IR spectroscopy shows a significant -26 cm(-1) shift for the carbonyl stretch relative to free acetone. Additionally, the new dialuminum complexes (i)(Pr)L(DBF)Al(2)Me(4) (3), (i)(Pr)L(Xan)Al(2)Me(4) (4), (t)(Bu,Et)L(DBF)Al(2)Me(4) (5), and (t)(Bu,Et)L(Xan)Al(2)Me(4) (6) are prepared by reaction of Al(2)Me(6) with the bis(amidines) in toluene solution. (1)H NMR spectroscopic studies indicate that 3 and 4 interact weakly with certain Lewis bases (DMSO, DMF, pyridine) to effect the exchange of the Al-bound Me groups. Other bases, such as THF and TMEDA, fail to interact. Solid-state structures for 3 and 4 are reported.  相似文献   

13.
Liu J  Zhang L  Hu J 《Organic letters》2008,10(23):5377-5380
Pregeneration of fluoro(phenylsulfonyl)methyl anion (PhSO(2)CHF(-)) paves the way for the efficient and highly stereoselective monofluoromethylation of (R)-N-tert-butylsulfinyl ketimines. The stereocontrol mode of the present diastereoselective monofluoromethylation of ketimines is different from the previously known nucleophilic fluoroalkylation of (R)-N-tert-butylsulfinyl aldimines, which suggests that a cyclic six-membered transition state (rather than a nonchelation controlled one) is involved in the current ketimine reaction.  相似文献   

14.
Tetracoordinated lanthanide amides [(MeaSi)2N]3Ln (μ-C1)Li(THF)3 (Ln=La (1), Pr (2)) were synthesized by the reaction of anhydrous lanthanide(Ⅲ) chlorides LnCl3 (Ln=La, Pr) with 3 equiv, of lithium bis(trimethylsilyl)amide (Me3Si)2NLi in THF, followed by recrystallization from toluene. Sublimation of 1 and 2 afforded the triscoordinate lanthanide amides [(Me3Si)2N]3Ln (Ln=La, Pr). The crystal structure of 2 was determined by X-ray diffraction analysis. The catalytic activity studies show that the tetracoordinate amides can be used as single-component MMA (methyl methacrylate) polymerization catalysts, while the triscoordinate amides showed poor activity on MMA polymerization under the same conditions.  相似文献   

15.
The coordination chemistry of the bis(dimethylphenylsilyl)amide ligand, [N(SiMe2Ph)2]1-, with sodium, potassium, and lanthanum has been investigated for comparison with the more commonly used [N(SiMe3)2]1- and [N(SiHMe2)2]1- ligands. HN(SiMe2Ph)2 reacts with KH to produce KN(SiMe2Ph)2, 1, which crystallizes from toluene as the dimer [KN(SiMe2Ph)2(C7H8)]2, 2. The structure of 2 shows that the [N(SiMe2Ph)2]1- ligand can function as a polyhapto ligand with coordination from each phenyl group as well as the normal nitrogen ligation and agostic methyl interactions common in methylsilylamides. Each potassium in 2 is ligated by an eta4-toluene, two bridging nitrogen atoms, and an eta2-phenyl, an eta1-phenyl, and an eta1-methyl group. KN(SiMe2Ph)2 crystallizes from toluene in the presence of 18-crown-6 to make the monometallic complex (18-crown-6)KN(SiMe2Ph)2, 3, in which [N(SiMe2Ph)2]1- functions as a simple monodentate ligand through nitrogen. The reaction of HN(SiMe2Ph)2 with NaH in THF at reflux for 2 days generates Na[N(SiMe2Ph)2], 4, which crystallizes as the solvated dimer {(THF)Na[mu-eta1:eta1-N(SiMe2Ph)2]}2, 5. A lanthanide metallocene derivative of [N(SiMe2Ph)2]1- was obtained by reaction of K[N(SiMe2Ph)2] with [(C5Me5)2La][(mu-Ph)2BPh2]. Crystals of (C5Me5)2La[N(SiMe2Ph)2], 6, show agostic interactions between lanthanum and methyl groups of each silyl substituent. The [N(SiMe3)2]1- analogue of 3, (18-crown-6)KN(SiMe3)2, 7, was also structurally characterized for comparison.  相似文献   

16.
胡向平 《分子催化》2011,(6):485-488
将BoPhoz类膦-氨基膦配体应用在Rh-催化β-脱氢氨基酸酯的不对称氢化反应中,考察了配体结构及反应条件对反应结果的影响,并在优化的条件下研究了各种底物的适用范围,产物的对映选择性达81%ee.  相似文献   

17.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

18.
The amine-elimination reactions of Ln[N(SiMe3)2]2(THF)2(Ln=Sm, Yb and Eu) with amine bis(phenol)s (L1H2=[BunN(CH(2)-2-OC6H(2)-3,5-But2)2]H2; L2H2=[Me2NCH2CH2N(CH(2)-2-OC6H(2)-3,5-But2)2]H2) were investigated. It was found that the number of heteroatom(s) in the ligands has a profound effect on the reaction outcome for the samarium systems. Reaction of the tetradentate diamino-bis(phenol)s L2H2 with Sm[N(SiMe3)2]2(THF)2 afforded a yellow solution, which indicated the complete oxidation of the SmII species, yellow being the characteristic color of SmIII species, while the same reaction with Eu[N(SiMe3)2]2(THF)2 gave a divalent complex with a dimeric structure (EuL2)2. Using the tridentate amine bis(phenol)s L1H2 as the reagent, the novel mixed-valent samarium complex SmIII2SmIIL1(4) was prepared by the same reaction. Both reactions of L1H2 with Yb[N(SiMe3)2]2(THF)2 and Eu[N(SiMe3)2]2(THF)2 yielded the normal divalent lanthanide complexes: monomeric complex for YbII, YbL1(THF)3 and dimeric complex for EuII, (EuL1)2. All of the complexes are well characterized with elemental analyses, IR and 1H NMR spectra for , and , as well as X-ray crystal structure determination in the cases of complexes , , and .  相似文献   

19.
Yao Y  Xu X  Liu B  Zhang Y  Shen Q  Wong WT 《Inorganic chemistry》2005,44(14):5133-5140
A convenient method for the synthesis of lanthanide alkoxo complexes supported by a carbon-bridged bis(phenolate) ligand 2,2'-methylenebis(6-tert-butyl-4-methylphenoxo) (MBMP2-) is described. The reaction of (C5H5)3Nd with MBMPH2 in a 1:1 molar ratio in THF gave the bis(phenolato)lanthanide complex (C5H5)Nd(MBMP)(THF)2 (1) in a nearly quantitative yield. Complex 1 further reacted with 1 equiv of 2-propanol in THF to yield the bis(phenolato)lanthanide isopropoxide [(MBMP)2Nd(mu-OPr(i))(THF)2]2 (2) in high yield. Complex 2 can also be synthesized by the direct reaction of (C5H5)3Nd with MBMPH2 in a 1:1 molar ratio and then with 1 equiv of 2-propanol in situ in THF. Thus, the analogue bis(phenolato)lanthanide alkoxides [(MBMP)2Ln(mu-OR)(THF)2]2 [R = Pr(i), Ln = Yb (3); R = Me, Ln = Nd (4), Yb (5); R = CH2Ph, Ln = Nd (6), Yb (7)] were obtained by the reactions of (C5H5)3Ln (Ln = Nd, Yb) with MBMPH2 and then with 2-propanol, methanol, or benzyl alcohol, respectively. The ytterbium complex {[(MBMP)2Yb(THF)2]2(mu-OCH2Ph)(mu-OH)} (8) was also isolated as a byproduct. The single-crystal structural analyses of complexes 1-3 and 8 revealed that the coordination geometry around lanthanide metal can be best described as a distorted tetrahedron in complex 1 and as a distorted octahedron in complexes 2, 3, and 8. A O-H...Yb agostic interaction was observed in complex 8. Complexes 2-7 were shown to be efficient catalysts for the controlled polymerization of epsilon-caprolactone.  相似文献   

20.
Organolithium compounds play the leading role among the organometallic reagents in synthesis and in industrial processes. Up to date industrial application of methyllithium is limited because it is only soluble in diethyl ether, which amplifies various hazards in large-scale processes. However, most reactions require polar solvents like diethyl ether or THF to disassemble parent organolithium oligomers. If classical bidentate donor solvents like TMEDA (TMEDA= N,N,N',N'tetramethyl-1,2-ethanediamine) or DME (DME=1,2-dimethoxyethane) are added to methyllithium, tetrameric units are linked to form polymeric arrays that suffer from reduced reactivity and/or solubility. In this paper we present two different approaches to tune methyllithium aggregation. In [[(MeLi)4(dem)1,5)infinity] (1; DEM = EtOCH2OEt, diethoxymethane) a polymeric architecture is maintained that forms microporous soluble aggregates as a result of the rigid bite of the methylene-bridged bidentate donor base DEM. Wide channels of 720 pm in diameter in the structure maintain full solubility as they are coated with lipophilic ethyl groups and filled with solvent. In compound 1 the long-range Li3CH3...Li interactions found in solid [[(MeLi)4]infinity] are maintained. A different approach was successful in the disassembly of the tetrameric architecture of [((MeLi)4]infinity]. In the reaction of dilithium triazasulfite both the parent [(MeLi)4] tetramer and the [[Li2[(NtBu)3S]]2] dimer disintegrate and recombine to give an MeLi monomer stabilized in the adduct complex [(thf)3Li3Me-[(NtBu)3S]] (2). One side of the Li3 triangle, often found in organolithium chemistry, is shielded by the tripodal triazasulfite, while the other face is mu3-capped by the methanide anion. This Li3 structural motif is also present in organolithium tetramers and hexamers. All single-crystal structures have been confirmed through solid-state NMR experiments to be the same as in the bulk powder material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号