首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
王裕如  刘祎鹤  林兆江  方冬  李成州  乔明  张波 《中国物理 B》2016,25(2):27305-027305
An analytical model for a novel triple reduced surface field(RESURF) silicon-on-insulator(SOI) lateral doublediffused metal–oxide–semiconductor(LDMOS) field effect transistor with n-type top(N-top) layer, which can obtain a low on-state resistance, is proposed in this paper. The analytical model for surface potential and electric field distributions of the novel triple RESURF SOI LDMOS is presented by solving the two-dimensional(2D) Poisson's equation, which can also be applied to single, double and conventional triple RESURF SOI structures. The breakdown voltage(BV) is formulized to quantify the breakdown characteristic. Besides, the optimal integrated charge of N-top layer(Q_(ntop)) is derived, which can give guidance for doping the N-top layer. All the analytical results are well verified by numerical simulation results,showing the validity of the presented model. Hence, the proposed model can be a good tool for the device designers to provide accurate first-order design schemes and physical insights into the high voltage triple RESURF SOI device with N-top layer.  相似文献   

2.
By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here.  相似文献   

3.
乔明  张波  李肇基  方健  周贤达 《物理学报》2007,56(7):3990-3995
提出一种SOI基背栅体内场降低BG REBULF(back-gate reduced BULk field)耐压技术. 其机理是背栅电压诱生界面电荷,调制有源区电场分布,降低体内漏端电场,提高体内源端电场,从而突破习用结构的纵向耐压限制,提高器件的击穿电压. 借助二维数值仿真,分析背栅效应对厚膜高压SOI LDMOS (>600V) 击穿特性的影响,在背栅电压为330V时,实现器件击穿电压1020V,较习用结构提高47.83%. 该技术的提出,为600V以上级SOI基高压功率器件和高压集成电路的实现提供了一种新的设计思路. 关键词: SOI 背栅 体内场降低 LDMOS  相似文献   

4.
郑直  李威  李平 《中国物理 B》2013,(4):471-475
A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.  相似文献   

5.
乔明  庄翔  吴丽娟  章文通  温恒娟  张波  李肇基 《中国物理 B》2012,21(10):108502-108502
Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.  相似文献   

6.
王骁玮  罗小蓉  尹超  范远航  周坤  范叶  蔡金勇  罗尹春  张波  李肇基 《物理学报》2013,62(23):237301-237301
本文提出一种高k介质电导增强SOI LDMOS新结构(HK CE SOI LDMOS),并研究其机理. HK CE SOI LDMOS的特征是在漂移区两侧引入高k介质,反向阻断时,高k介质对漂移区进行自适应辅助耗尽,实现漂移区三维RESURF效应并调制电场,因而提高器件耐压和漂移区浓度并降低导通电阻. 借助三维仿真研究耐压、比导通电阻与器件结构参数之间的关系. 结果表明,HK CE SOI LDMOS与常规超结SOI LDMOS相比,耐压提高16%–18%,同时比导通电阻降低13%–20%,且缓解了由衬底辅助耗尽效应带来的电荷非平衡问题. 关键词: k介质')" href="#">高k介质 绝缘体上硅 (SOI) 击穿电压 比导通电阻  相似文献   

7.
石艳梅  刘继芝  姚素英  丁燕红 《物理学报》2014,63(10):107302-107302
为降低绝缘体上硅(SOI)横向双扩散金属氧化物半导体(LDMOS)器件的导通电阻,同时提高器件击穿电压,提出了一种具有纵向漏极场板的低导通电阻槽栅槽漏SOI-LDMOS器件新结构.该结构特征为采用了槽栅槽漏结构,在纵向上扩展了电流传导区域,在横向上缩短了电流传导路径,降低了器件导通电阻;漏端采用了纵向漏极场板,该场板对漏端下方的电场进行了调制,从而减弱了漏极末端的高电场,提高了器件的击穿电压.利用二维数值仿真软件MEDICI对新结构与具有相同器件尺寸的传统SOI结构、槽栅SOI结构、槽栅槽漏SOI结构进行了比较.结果表明:在保证各自最高优值的条件下,与这三种结构相比,新结构的比导通电阻分别降低了53%,23%和提高了87%,击穿电压则分别提高了4%、降低了9%、提高了45%.比较四种结构的优值,具有纵向漏极场板的槽栅槽漏SOI结构优值最高,这表明在四种结构中新结构保持了较低导通电阻,同时又具有较高的击穿电压.  相似文献   

8.
赵远远  乔明  王伟宾  王猛  张波 《中国物理 B》2012,21(1):18501-018501
A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μ m thick thin-layer SOI.  相似文献   

9.
A new analytical model for the surface electric field distribution and breakdown voltage of the silicon on insulator (SOI) trench lateral double-diffused metal-oxide-semiconductor (LDMOS) is presented. Based on the two-dimensional Laplace solution and Poisson solution, the model considers the influence of structure parameters such as the doping concentration of the drift region, and the depth and width of the trench on the surface electric field. Further, a simple analytical expression of the breakdown voltage is obtained, which offers an effective way to gain an optimal high voltage. All the analytical results are in good agreement with the simulation results.  相似文献   

10.
罗小蓉  姚国亮  陈曦  王琦  葛瑞  Florin Udrea 《中国物理 B》2011,20(2):28501-028501
A low specific on-resistance (R S,on) silicon-on-insulator (SOI) trench MOSFET (metal-oxide-semiconductor-field-effect-transistor) with a reduced cell pitch is proposed.The lateral MOSFET features multiple trenches:two oxide trenches in the drift region and a trench gate extended to the buried oxide (BOX) (SOI MT MOSFET).Firstly,the oxide trenches increase the average electric field strength along the x direction due to lower permittivity of oxide compared with that of Si;secondly,the oxide trenches cause multiple-directional depletion,which improves the electric field distribution and enhances the reduced surface field (RESURF) effect in the SOI layer.Both of them result in a high breakdown voltage (BV).Thirdly,the oxide trenches cause the drift region to be folded in the vertical direction,leading to a shortened cell pitch and a reduced R S,on.Fourthly,the trench gate extended to the BOX further reduces R S,on,owing to the electron accumulation layer.The BV of the MT MOSFET increases from 309 V for a conventional SOI lateral double diffused metal-oxide semiconductor (LDMOS) to 632 V at the same half cell pitch of 21.5 μm,and R S,on decreases from 419 m · cm 2 to 36.6 m · cm 2.The proposed structure can also help to dramatically reduce the cell pitch at the same breakdown voltage.  相似文献   

11.
李春来  段宝兴  马剑冲  袁嵩  杨银堂 《物理学报》2015,64(16):167304-167304
为了设计功率集成电路所需要的低功耗横向双扩散金属氧化物半导体器件(lateral double-diffused MOSFET), 在已有的N型缓冲层超级结LDMOS(N-buffered-SJ-LDMOS)结构基础上, 提出了一种具有P型覆盖层新型超级结LDMOS结构(P-covered-SJ-LDMOS). 这种结构不但能够消除传统的N沟道SJ-LDMOS由于P型衬底产生的衬底辅助耗尽问题, 使得超级结层的N区和P区的电荷完全补偿, 而且还能利用覆盖层的电荷补偿作用, 提高N型缓冲层浓度, 从而降低了器件的比导通电阻. 利用三维仿真软件ISE分析表明, 在漂移区长度均为10 μm的情况下, P-covered-SJ-LDMOS的比导通电阻较一般SJ-LDMOS结构降低了59%左右, 较文献提出的N型缓冲层 SJ-LDMOS(N-buffered-SJ-LDMOS)结构降低了43%左右.  相似文献   

12.
段宝兴  曹震  袁小宁  杨银堂 《物理学报》2014,63(22):227302-227302
针对功率集成电路对低损耗LDMOS (lateral double-diffused MOSFET)类器件的要求,在N型缓冲层super junction LDMOS (buffered SJ-LDMOS)结构基础上, 提出了一种具有N型缓冲层的REBULF (reduced BULk field) super junction LDMOS结构. 这种结构不但消除了N沟道SJ-LDMOS由于P型衬底带来的衬底辅助耗尽效应问题, 使super junction的N区和P区电荷完全补偿, 而且同时利用REBULF的部分N型缓冲层电场调制效应, 在表面电场分布中引入新的电场峰而使横向表面电场分布均匀, 提高了器件的击穿电压. 通过优化部分N型埋层的位置和参数, 利用仿真软件ISE分析表明, 新型REBULF SJ-LDMOS 的击穿电压较一般LDMOS提高了49%左右, 较文献提出的buffered SJ-LDMOS结构提高了30%左右. 关键词: lateral double-diffused MOSFET super junction 击穿电压 表面电场  相似文献   

13.
双面阶梯埋氧层部分SOI高压器件新结构   总被引:4,自引:0,他引:4       下载免费PDF全文
李琦  张波  李肇基 《物理学报》2008,57(10):6565-6570
提出了双面阶梯埋氧层部分绝缘硅(silicon on insulator,SIO)高压器件新结构. 双面阶梯埋氧层的附加电场对表面电场的调制作用使表面电场达到近似理想的均匀分布, 耗尽层通过源极下硅窗口进一步向硅衬底扩展, 使埋氧层中纵向电场高达常规SOI结构的两倍, 且缓解了常规SOI结构的自热效应. 建立了漂移区电场的二维解析模型, 获得了器件结构参数间的优化关系. 结果表明, 在导通电阻相近的情况下, 双面阶梯埋氧层部分SOI结构击穿电压较常规SOI器件提高58%, 温度降低10—30K. 关键词: 双面阶梯 埋氧层 调制 自热效应  相似文献   

14.
A low on-resistance(Ron,sp) integrable silicon-on-insulator(SOI) n-channel lateral double-diffused metal-oxide-semiconductor(LDMOS) is proposed and its mechanism is investigated by simulation.The LDMOS has two features:the integration of a planar gate and an extended trench gate(double gates(DGs));and a buried P-layer in the N-drift region,which forms a triple reduced surface field(RESURF)(TR) structure.The triple RESURF not only modulates the electric field distribution,but also increases N-drift doping,resulting in a reduced specific on-resistance(Ron,sp) and an improved breakdown voltage(BV) in the off-state.The DGs form dual conduction channels and,moreover,the extended trench gate widens the vertical conduction area,both of which further reduce the Ron,sp.The BV and Ron,sp are 328 V and 8.8 m.cm2,respectively,for a DG TR metal-oxide-semiconductor field-effect transistor(MOSFET) by simulation.Compared with a conventional SOI LDMOS,a DG TR MOSFET with the same dimensional device parameters as those of the DG TR MOSFET reduces Ron,sp by 59% and increases BV by 6%.The extended trench gate synchronously acts as an isolation trench between the high-voltage device and low-voltage circuitry in a high-voltage integrated circuit,thereby saving the chip area and simplifying the fabrication processes.  相似文献   

15.
In this paper, we propose a two-dimensional(2D) analytic model for the channel potential and electric field distribution of the RESURF AlGaN/GaN high electron mobility transistors(HEMTs). The model is constructed by two-dimensional Poisson's equation with appropriate boundary conditions. In the RESURF AlGaN/GaN HEMTs, we utilize the RESURF effect generated by doped negative charge in the AlGaN layer and introduce new electric field peaks in the device channels,thus, homogenizing the distribution of electric field in channel and improving the breakdown voltage of the device. In order to reveal the influence of doped negative charge on the electric field distribution, we demonstrate in detail the influences of the charge doping density and doping position on the potential and electric field distribution of the RESURF AlGaN/GaN HEMTs with double low density drain(LDD). The validity of the model is verified by comparing the results obtained from the analytical model with the simulation results from the ISE software. This analysis method gives a physical insight into the mechanism of the AlGaN/GaN HEMTs and provides reference to modeling other AlGaN/GaN HEMTs device.  相似文献   

16.
SOI部分耗尽SiGe HBT集电结空间电荷区模型   总被引:1,自引:0,他引:1       下载免费PDF全文
徐小波  张鹤鸣  胡辉勇  许立军  马建立 《物理学报》2011,60(7):78502-078502
SOI上的薄膜异质SiGe晶体管通过采用"折叠"集电极,已成功实现SOI上CMOS与HBT的兼容.本文结合SOI薄膜上的纵向SiGe HBT结构模型,提出了包含纵向、横向欧姆电阻和耗尽电容的"部分耗尽 (partially depleted) 晶体管"集电区简化电路模型.基于器件物理及实际考虑,系统建立了外延集电层电场、电势、耗尽宽度模型,并根据该模型对不同器件结构参数进行分析.结果表明,空间电荷区表现为本征集电结耗尽与MOS电容耗尽,空间电荷区宽度随集电结掺杂浓度减小而增大,随集电结反偏电压提高而增大, 关键词: SOI SiGe HBT 集电区 空间电荷区模型  相似文献   

17.
A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon film thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1μm which is much larger than the normal value of about 30V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.  相似文献   

18.
A novel silicon-on-insulator lateral insulated gate bipolar transistor(SOI LIGBT)is proposed in this paper.The proposed device has a P-type buried layer and a partial-SOI layer,which is called the BPSOI-LIGBT.Due to the electric field modulation effect generated by the P-type buried layer and the partial-SOI layer,the proposed structure generates two new peaks in the surface electric field distribution,which can achieve a smaller device size with a higher breakdown voltage.The smaller size of the device is beneficial to the fast switching.The simulation shows that under the same size,the breakdown voltage of the BPSOI LIGBT is 26%higher than that of the conventional partial-SOI LIGBT(PSOI LIGBT),and 84%higher than the traditional SOI LIGBT.When the forward voltage drop is 2.05 V,the turn-off time of the BPSOI LIGBT is 71%shorter than that of the traditional SOI LIGBT.Therefore,the proposed BPSOI LIGBT has a better forward voltage drop and turn-off time trade-off than the traditional SOI LIGBT.In addition,the BPSOI LIGBT effectively relieves the self-heating effect of the traditional SOI LIGBT.  相似文献   

19.
This paper presents a new silicon-on-insulator(SOI) lateral-double-diffused metal-oxide-semiconductor transistor(LDMOST) device with alternated high-k dielectric and step doped silicon pillars(HKSD device). Due to the modulation of step doping technology and high-k dielectric on the electric field and doped profile of each zone, the HKSD device shows a greater performance. The analytical models of the potential, electric field, optimal breakdown voltage, and optimal doped profile are derived. The analytical results and the simulated results are basically consistent, which confirms the proposed model suitable for the HKSD device. The potential and electric field modulation mechanism are investigated based on the simulation and analytical models. Furthermore, the influence of the parameters on the breakdown voltage(BV) and specific on-resistance(Ron,sp) are obtained. The results indicate that the HKSD device has a higher BV and lower Ron,sp compared to the SD device and HK device.  相似文献   

20.
段宝兴  曹震  袁嵩  袁小宁  杨银堂 《物理学报》2014,63(24):247301-247301
为了突破传统横向双扩散金属-氧化物-半导体器件(lateral double-diffused MOSFET)击穿电压与比导通电阻的极限关系,本文在缓冲层横向双扩散超结功率器件(super junction LDMOS-SJ LDMOS)结构基础上,提出了具有缓冲层分区新型SJ-LDMOS结构.新结构利用电场调制效应将分区缓冲层产生的电场峰引入超结(super junction)表面而优化了SJ-LDMOS的表面电场分布,缓解了横向LDMOS器件由于受纵向电场影响使横向电场分布不均匀、横向单位耐压量低的问题.利用仿真分析软件ISE分析表明,优化条件下,当缓冲层分区为3时,提出的缓冲层分区SJ-LDMOS表面电场最优,击穿电压达到饱和时较一般LDMOS结构提高了50%左右,较缓冲层SJ-LDMOS结构提高了32%左右,横向单位耐压量达到18.48 V/μm.击穿电压为382 V的缓冲层分区SJ-LDMOS,比导通电阻为25.6 mΩ·cm2,突破了一般LDMOS击穿电压为254 V时比导通电阻为71.8 mΩ·cm2的极限关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号