首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A set of Mo/Si periodic multilayers is studied by non-destructive analysis methods. The thickness of the Si layers is 5 nm while the thickness of the Mo layers changes from one multilayer to another, from 2 to 4 nm. This enables us to probe the effect of the transition between the amorphous and crystalline state of the Mo layers near the interfaces with Si on the optical performances of the multilayers. This transition results in the variation of the refractive index (density variation) of the Mo layers, as observed by X-ray reflectivity (XRR) at a wavelength of 0.154 nm. Combining X-ray emission spectroscopy (XES) and XRR, the parameters (composition, thickness and roughness) of the interfacial layers formed by the interaction between the Mo and Si layers are determined. However, these parameters do not evolve significantly as a function of the Mo thickness. It is observed by diffuse scattering at 1.33 nm that the lateral correlation length of the roughness strongly decreases when the Mo thickness goes from 2 to 3 nm. This is due to the development of Mo crystallites parallel to the multilayer surface.  相似文献   

2.
We present a comparative study of B4C/Mo and B4C/Mo2C periodic multilayer structures deposited by magnetron sputtering. The characterization was performed by grazing incidence X-ray reflectometry at two different energies and high resolution transmission electron microscopy. The experimental results indicate the existence of an interdiffusion layer at the B4C-on-Mo interface in the B4C/Mo system. Thus, the B4C/Mo multilayers were modeled by an asymmetric structure with three layers in each period. The thickness of B4C-on-Mo interfacial layer was estimated about 1.1 nm. The B4C/Mo2C multilayers present less interdiffusion and are well modeled by a symmetric structure without interfacial layers. This study shows that B4C/Mo2C structure is an interesting alternative to B4C/Mo multilayer for X-ray optic applications.  相似文献   

3.
The optical properties of Sc/Si periodic multilayers are analyzed at three wavelengths in the X-ray range: 0.154, 0.712 and 12.7 nm. Fitting the reflectivity curves obtained at these three wavelengths enable us to constrain the parameters, thickness, density and roughness of the various layers, of the studied multilayers. Scattering curves were also measured at 12.7 nm on some samples to obtain an estimate of the correlation length of the roughness. Two sets of multilayers are used, with and without B4C diffusion barrier at the interfaces. To see the efficiency of the B4C layers the measures are performed after annealing up to 400 °C. A dramatic change of the structure of the Sc/Si multilayer is observed between 100 and 200 °C leading to a strong loss of reflectivity. For the Sc/B4C/Si/B4C multilayer the structure is stable up to 200 °C after which a progressive evolution of the stack occurs.  相似文献   

4.
 用磁控溅射法分别制备了以Mo膜层和Si膜层为顶层的Mo/Si多层膜系列, 利用小角X射线衍射确定了各多层膜的周期厚度。以不同周期数的Mo/Si多层膜的新鲜表面近似等同于同一多层膜的内界面,通过原子力显微镜研究了多层膜界面粗糙度随膜层数的变化规律。并在国家同步辐射实验室测量了各多层膜的软X射线反射率。研究表明:随着膜层数的增加,Mo膜层和Si膜层的界面粗糙度先减小后增加然后再减小,多层膜的峰值反射率先增加后减小。  相似文献   

5.
We present the non-destructive analysis of aperiodic Mo/Si multilayers by X-ray emission spectroscopy induced by electrons. The Si 3p occupied valence states of the silicon atoms present within these structures are analysed. Because of the great sensitivity of these states to the physico-chemical environment of the Si atoms, it is possible to distinguish the emission from the center of the Si layer (amorphous silicon) to that of the interfacial zones between the Mo and Si layers. Thus, the presence of molybdenum silicides is evidenced in the interfacial zones. It is also shown that the relative proportion of interfacial silicides depends on the deposition conditions.  相似文献   

6.
高反射率Mo/B4C多层膜设计及制备   总被引:3,自引:2,他引:1       下载免费PDF全文
 运用遗传算法优化设计了Mo/B4C多层膜结构。入射光入射角度取10°时,设计的理想多层膜膜对数为150,周期为3.59 nm,Gamma值(Mo膜厚与周期的比值)为0.41,峰值反射率为33.29%。采用恒功率模式直流磁控溅射方法制作Mo/B4C多层膜。通过在Mo/B4C多层膜与基底之间增加15 nm厚的Cr粘附层,提高多层膜与基底的粘附力。另外,还采用调整多层膜Gamma值的方法减小其内应力,调整后多层膜结构周期为3.59 nm, Mo膜厚1.97 nm, B4C膜厚1.62 nm,峰值反射率26.34%。制备了膜对数为150的Mo/B4C膜并测量了其反射率,在波长7.03 nm处,Mo/B4C多层膜的近正入射反射率为21.0%。最后对测量结果进行了拟合,拟合得到Mo/B4C多层膜的周期为3.60 nm,Gamma值0.60,界面粗糙度为0.30 nm。  相似文献   

7.
在特定波长下,用四层结构模型模拟了Mo/Si多层膜的软X射线反射率.研究了扩散屏障层dMo-on-Si和dSi-on-Mo对Mo/Si多层膜软X射线反射率的影响.研究发现,扩散屏障层并不总是损害Mo/Si多层膜的光学性能,通过合理设计dMo-on-Si和dSi-on-Mo厚度,增加dMo-on-Si与dSi-on-Mo的比值,也能提高多层膜的软X射线反射率.  相似文献   

8.
用不同的Mo靶溅射功率制备Mo/Si多层膜   总被引:1,自引:1,他引:1       下载免费PDF全文
 用磁控溅射法制备了周期厚度和周期数均相同的Mo/Si多层膜,用原子力显微镜和小角X射线衍射分别研究了Mo靶溅射功率不相同时,Mo/Si多层膜表面形貌和晶相的变化。随后在国家同步辐射实验室测量了Mo/Si多层膜的软X射线反射率。研究发现,随着Mo靶溅射功率的增大,Mo/Si多层膜的表面粗糙度增加,Mo的特征X射线衍射峰也增强,Mo/Si多层膜的软X射线峰值反射率先增大后减小。  相似文献   

9.
为提高Mo/Si多层膜的稳定性与使用寿命,通过分析多层膜驻波电场的分布,对表面保护层及多层膜最上层材料的厚度进行优化设计,使优化后的反射率最高.计算表明,一定厚度的表面保护层总对应一个最优的最上层材料厚度.在13.36 nm波长,膜对数为50的Mo/Si多层膜10度入射的理论反射率为74.47%;当添加厚度为2.3 nm的Ru作为表面保护层,对应多层膜最上层Si的优化厚度为3.93 nm,其理论反射率为75.20%.设计结果表明,通过优化设计表面保护层,可以提高多层膜稳定性,改善多层膜性能.  相似文献   

10.
Mo/Si multilayers with a single-layer thickness in the nanometre range (60 Mo/Si layers in total) were deposited on Si(100) substrates by dc magnetron sputtering. Upon uniaxial bending at elevated temperatures between 300 and 440 °C in vacuum, unconventional crack patterns formed in the multilayers. Tensile stress within the multilayer stack and Si substrate due to bending during thermal treatment was estimated to be on the order of 100 MPa. A combination of external bending, residual and thermal stresses is considered to be the reason for this phenomenon. Cracks had either a sinusoidal or a spiral shape. The surface frequency of the spirals observed was 10 cm-2, with a track width of 30 m and a spiral diameter of 300 m. In general, cracking was accompanied by complete local de-bonding of the whole Mo/Si multilayer stack from the substrate. Fracture patterns were studied by optical microscopy. In addition, the morphological parameters of the remaining non-delaminated multilayers were determined by means of X-ray reflectometry supported by investigation of phase content by wide-angle X-ray scattering . PACS 68.35.-p; 68.35.Bs; 68.90.+g; 81.05.Zx  相似文献   

11.
The surface and interface roughness of Mo/B4C multilayer mirrors for 7-nm soft X-ray polarizer with variable layer pairs (N = 50, 70, 90 and 110), fabricated by DC sputtering technique is investigated by atomic force microscopy and X-ray scattering and reflecting. The experimental results present that the surface and interface roughness of Mo/B4C multilayer mirrors increase layer by layer from its substrate as its Mo layer thickness greater than 2 nm, and the roughness grown tendency could be characterized by a quadratic function.  相似文献   

12.
Mo/Si multilayers are fabricated by electron-beam evaporation in UHV at different temperatures (30° C, 150° C, 200° C) during deposition. After completion their thermal stability is tested by baking them at temperatures (T bak) between 200° C and 800° C in steps of 50° C or 100° C. After each baking step the multilayers are characterized by small angle CuK-X-ray diffraction. Additionally, the normal incidence soft-X-ray reflectivity for wavelengths between 11 nm and 19 nm is determined after baking at 500° C. Furthermore, the layer structure of the multilayers is investigated by means of Rutherford Backscattering Spectroscopy (RBS) and sputter/Auger Electron Spectroscopy (AES) technique. While the reflectivity turns out to be highest for a deposition temperature of 150° C, the thermal stability of the multilayer increases with deposition temperature. The multilayer deposited at 200° C stands even a 20 min 500° C baking without considerable changes in the reflectivity behaviour.  相似文献   

13.
Silicon dioxide (SiO2) layers with a thickness more than 10 nm can be formed at ∼120 °C by direct Si oxidation with nitric acid (HNO3). Si is initially immersed in 40 wt.% HNO3 at the boiling temperature of 108 °C, which forms a ∼1 nm SiO2 layer, and the immersion is continued after reaching the azeotropic point (i.e., 68 wt.% HNO3 at 121 °C), resulting in an increase in the SiO2 thickness. The nitric acid oxidation rates are the same for (1 1 1) and (1 0 0) orientations, and n-type and p-type Si wafers. The oxidation rate is constant at least up to 15 nm SiO2 thickness (i.e., 1.5 nm/h for single crystalline Si and 3.4 nm/h for polycrystalline Si (poly-Si)), indicating that the interfacial reaction is the rate-determining step. SiO2 layers with a uniform thickness are formed even on a rough surface of poly-Si thin film.  相似文献   

14.
Ultrathin Mo (5 nm)/MoN (5 nm) bilayer nanostructure has been studied as a diffusion barrier for Cu metallization. The Mo/MoN bilayer was prepared by magnetron sputtering and the thermal stability of this barrier is investigated after annealing the Cu/barrier/Si film stack at different temperatures in vacuum for 10 min. The failure of barrier structure is indicated by the abrupt increase in sheet resistance and the formation of Cu3Si phase proved by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). High resolution transmission electron microscopy (HRTEM) examination suggested that the ultrathin Mo/MoN barrier is stable and can prevent the diffusion of Cu at least up to 600 °C.  相似文献   

15.
软X射线Mo/Si多层膜反射率拟合分析   总被引:12,自引:5,他引:7  
由于多层膜的表界面粗糙度和材料之间的相互扩散等因素,导致多层膜的实际反射率小于理论计算的反射率,因此,多层膜结构参量的确定对镀膜工艺参量的标定具有重要意义。由于描述单个非理想粗糙界面散射的Stearns法适用于软X射线短波段区域,采用它的数学模型来描述软X射线多层膜的粗糙度,利用最小二乘法曲线拟合法对同步辐射测得的Mo/Si多层膜的反射率曲线进行拟合,得到了非常好的拟合结果,从而确定了多层膜结构参量,同时分析了多层膜周期厚度,厚度比率,界面宽度以及仪器光谱分辨率对多层膜反射特性的影响,这些工作都为镀膜工艺改进提供了一定的理论依据。  相似文献   

16.
A series of Mo/Si multilayers with the same periodic length and different periodic number were prepared by magnetron sputtering, whose top layers were respectively Mo layer and Si layer. Periodic length and interface roughness of Mo/Si multilayers were determined by small angle X-ray diffraction (SAXRD).Surface roughness change curve of Mo/Si multilayer with increasing layer number was studied by atomic force microscope (AFM). Soft X-ray reflectivity of Mo/Si multilayers was measured in National Synchrotron Radiation Laboratory (NSRL). Theoretical and experimental results show that the soft X-ray reflectivity of Mo/Si multilayer is mainly determined by periodic number and interface roughness, surface roughness has little effect on reflectivity.  相似文献   

17.
Mo/Si multilayer (ML) systems were deposited on Si(100) substrate by DC magnetron sputtering. The MLs were annealed at temperatures up to 440 °C under high-vacuum conditions, both with and without the influence of external mechanical stress, and characterized before and after thermal treatment by means of X-ray reflectometry, wide-angle X-ray scattering and optical microscopy. Two ML configurations were compared, one composed of pure Mo and Si layers and another with additional B4C and C interlayers at the Mo/Si interfaces, respectively. The external mechanical stress applied caused bending of the substrate and adherent ML, with an accompanied internal stress of approximately 60 GPa. An important outcome of the investigation was that dedicated release bending of MLs can reduce/compensate the influences of the internal stressed states. Thermal stability could be increased for both ML systems during sample annealing. For ML samples with additional B4C and C layers at the Mo/Si interfaces, the influence of external stress was more significant compared to that for pure Mo/Si MLs. This indicates that the additional layers mainly act as diffusion barriers and additionally as stress-relaxing buffers. PACS 68.60.Dv; 68.65.Ac; 42.79.Bh  相似文献   

18.
The e-beam deposited multilayers (MLS) were studied under rapid thermal annealing (RTA) between 250°C and 1000°C during 30 s. MLS with five Co/Si/W/Si periods, each 13.9 nm (MLS1) and 18 nm (MLS2) were deposited onto oxidized Si substrates. Samples were analyzed by X-ray diffraction, hard and soft X-ray reflectivity measurements and grazing incidence X-ray diffuse scattering. The MLS period, interface roughness and its lateral and vertical correlations were obtained by simulation of the hard X-ray reflectivity and diffuse scattering spectra. The MLS1 with thinner Co layers is more temperature resistant. However, its soft X-ray reflectivity is smaller. The results show that this is because of shorter lateral and vertical correlation lengths of the interface roughness which may considerably influence the X-ray reflectivity of multilayers.  相似文献   

19.
Recent extreme ultraviolet sources using high-harmonic generation in a rare gas make new optics developments necessary. We report on the study and development of multilayer structures with efficient reflectivity in the 35–75 eV energy range. We have optimized, deposited and characterized two aperiodic broadband mirrors consisting of a Mo, Si and B4C thin-film stack. We used the needle procedure in order to optimize mirror reflectivity. The magnetron sputter deposited multilayers have been calibrated and characterized using Cu K α grazing incidence X-ray reflectometry. Reflectivity measured at near-normal incidence on a synchrotron radiation source reaches 12% with a full width at half maximum of nearly 40 eV. Experimental results are compared with theoretical simulation using available optical constants for Mo, Si and B4C in this spectral range.  相似文献   

20.
Soft X-ray multilayer reflectors must be deposited on super-smooth surface such as super-polished silicon wafers or glasses, which are complicate, time-consuming and expensive to produce. To overcome this shortage, C films deposited by RF magnetron sputtering were considered to smooth the K9 glass substrates’ surface in the present paper. The structure of C films was systematically studied by XRD and Raman spectrum. The surface morphology and rms-roughness were obtained by AFM. Then, we calculated the impact of the C layers on the reflectivity curve of Mo/Si soft X-ray multilayer reflector around 13.5 nm. The C films exhibit typical amorphous state. With the increasing of power and thickness, the content of sp3 hybrid bonding decreases while the amount or size of well-organized graphite clusters increases. The surface rms-roughness decreases from 2.4 nm to 0.62 nm after smoothed by an 80 nm thick C layer deposited in 500 W, which is the smoothest C layer surface we have obtained. The calculation results show that the theoretical normal incidence reflectivity of Mo/Si multilayer at 13.5 nm increases from 7% to 63%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号